如何用SDS-PAGE进行目的基因的获取优化表达检测去除上样带来的误差

&&& 产品中心&&& &&&&试剂&&& &&&&免疫试剂&&& &&&&Western Blotting
还原型5X SDS上样缓冲液
分类:Western Blotting
品牌:BioTNT
原价:¥50
现价:¥42.40&&&&节省:¥8
规格:10ml用途:制胶,电泳和转膜(建议客户10块胶以下的选用)产地:biotnt
&还原型蛋白上样缓冲液(5X)
产品组成:
还原型蛋白上样缓冲液()
SDS-PAGE蛋白上样缓冲液(,)是一种经过改良的以溴酚蓝为染料,倍浓缩的蛋白上样缓冲液,可用于常规的蛋白样品的上样。
试剂清单:
还原型蛋白上样缓冲液()
保存条件:
&O&-20℃保存,12个月;2-8℃短期保存。
&O&建议使用前根据实验情况进行分装储存。
注意事项:
&O&SDS-PAGE蛋白上样缓冲液()中含少量;
&O&SDS-PAGE蛋白上样缓冲液()必须充分溶解后再使用
&O&为了您的安全和健康,请穿实验服并戴防护手套操作。
使用说明:
1:室温溶解蛋白上样缓冲液()并平衡到室温;
2:按照每4&ul样本加入1ul&SDS-PAGE蛋白上样缓冲液()的比例,充分混匀即可;
3:℃水浴加热分钟,℃水浴加热分钟,以充分变性蛋白。
注:高温易形成聚合物,不易进入胶中,建议选择℃水浴,请根据实际实验情况选择。
4:冷却至室温,加入到胶加样孔内即可。
5:一般情况下电泳至蓝色染料到达胶底端附近即可停止电泳。
技术支持:&&&&产品咨询:&&&&售后服务群:
ELISA、蛋白芯片、荧光定量PCR、PCR ARRAY--BioTNT 科研好助手
产品搜索说明:
1. 搜索产品时先要选择搜索条件:品名搜索和货号搜索,搜索到产品列表时,可根据产品类别和品牌进行一次筛选;
2. 由于某些产品的英文名较多,可更换关键词搜索;
3. 当进行品名搜索时,切勿将品名和种类同时输入,否则就有可能搜索不到产品(例如:FAST Frame for Chip
Kits - 4 Slide frame 生物芯片,将有可能搜索不到产品或者过多的产品);
4. 如果您需求的产品比较急时,可联系在线客服,即时为您提供更便捷的服务。利用 E.coli表达猪圆环病毒2型Cap蛋白生产病毒样颗粒疫苗
赵晓云, 乔绪稳, 陈瑾, 李鹏成, 于晓明, 朱国强, 郑其升, 侯继波. 利用 E.coli表达猪圆环病毒2型Cap蛋白生产病毒样颗粒疫苗 . 48(5): 976-986ZHAO Xiao-yun, QIAO Xu-wen, CHEN Jin, LI Peng-cheng, YU Xiao-ming, ZHU Guo-qiang, ZHENG Qi-sheng, HOU Ji-bo. PCV2 Virus Like Particles Vaccine Produced with Recombinant Cap Protein Expressed in
E.coli . Scientia Acricultura Sinica, 48(5): 976-986&&
Permissions
利用 E.coli表达猪圆环病毒2型Cap蛋白生产病毒样颗粒疫苗
赵晓云1,2,
1国家兽用生物制品工程技术研究中心,南京 210014
2扬州大学兽医学院,江苏扬州 225009
通信作者:郑其升,Tel:025-;E-mail:;侯继波,Tel:025-;E-mail:
联系方式:赵晓云,E-mail:。
基金:国家公益性行业(农业)科研专项()、江苏省农业自主创新专项(CX(13)3074)
【目的】研究利用大肠杆菌可溶性表达PCV2b亚型ORF2基因,利用重组Cap蛋白制备PCV2 VLP疫苗的可行性。【方法】根据大肠杆菌密码子使用频率表优化合成PCV2 NJ株ORF2基因,将其插入原核表达载体pQZ1,鉴定阳性后转入表达宿主菌BL21,利用原核表达平台CVC1102对重组菌进行诱导表达。利用SDS-PAGE与Western blotting对目的基因的表达及产物的可溶性进行分析;利用电镜分析技术鉴定重组Cap蛋白VLP组装;利用BCA试剂盒测定重组大肠杆菌破碎后上清中总蛋白量,利用薄层扫描分析确定目的蛋白百分比,得出目的蛋白量,将重组Cap蛋白的浓度调整为1 mg·mL-1。使用不同剂量的重组蛋白与206佐剂乳化,免疫2—3周龄抗原抗体双阴性的仔猪,同时设含免疫增强剂CVC1301、CVC1302的试验组、同类制品免疫对照组与空白对照组,免疫后14 d与21 d所有试验猪采血,分离血清,利用武汉科前生物科技有限公司的猪圆环病毒2型抗体ELISA检测试剂盒检测试验猪血清中PCV2抗体水平;免疫后28 d试验猪按照兽用生物制品质量标准汇编中公布的PCV2攻毒程序,利用PCV2 NJ株F6代进行强毒攻击试验,肌肉注射与口服PCV2 NJ株各105.0TCID50,同时利用乳化的钥匙孔血蓝蛋白及硫酸巯基乙醇培养基进行免疫刺激,攻毒后25 d,对所有试验猪进行解剖检测,通过攻毒过程中试验猪体温变化、试验猪平均相对日增重、解剖时试验猪肺部与相关淋巴结的大体变化及攻毒后PCV2核酸检测等4个方面评价大肠杆菌表达制备的PCV2 VLP的免疫效力。【结果】SDS-PAGE结果表明PCV2 NJ株优化的ORF2基因在大肠杆菌中得到了高效表达,表达产物以完全可溶性形式存在于菌体超声波破碎后的上清中;Western blotting分析结果显示表达的重组Cap蛋白能够与PCV2阳性血清发生反应;电镜下观察可见大量直径在17 nm左右的PCV2病毒样颗粒存在于超声破碎后的上清中;500 &#x003g/头重组VLP疫苗免疫猪产生较高的抗体水平,单次免疫后21 d抗体100%达到合格,对PCV2强毒的攻击提供完全保护。【结论】实现了PCV2 Cap蛋白在大肠杆菌中高效可溶性表达,重组Cap蛋白体外自我组装成病毒样颗粒,且具有良好的免疫原性,可用于制备PCV2亚单位疫苗。
猪圆环病毒2型;
可溶性表达;
病毒样颗粒;
PCV2 Virus Like Particles Vaccine Produced with Recombinant Cap Protein Expressed in
ZHAO Xiao-yun1,2,
QIAO Xu-wen1,
CHEN Jin1,
LI Peng-cheng1,
YU Xiao-ming1,
ZHU Guo-qiang2,
ZHENG Qi-sheng1,
HOU Ji-bo1
1National Research Center of Veterinary Biological Engineering and Technology, Nanjing 210014
2College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu
【Objective】The objective of this study is to develop recombinant virus like particles vaccine for Porcine circovirus type 2 through soluble prokaryotic expression of ORF2 gene. 【Method】 The optimized ORF2 gene of PCV2 NJ strain was synthesized according to codon usage of E.coli, and then the optimized ORF2 gene was cloned into pQZ1 to get the recombinant prokaryotic expression vector named pQZ-Cap. The target gene was expressed with 1.0 mmol·L-1 IPTG induction for 24 h under 15℃ on the prokaryotic expression platform in authors’ laboratory following the recombinant plasmid pQZ-Cap transformed into host E.coli BL21. Firstly, SDS-PAGE and Western blotting were used to identify the expression and solubility of the recombinant protein. Secondly, assemble for recombinant Cap VLP was evaluated through electron microscope analysis technology. Furthermore, swines were inoculated with recombinant Cap protein emulisified in SPPEIC 206 adjuvant, and the immunogenicity of recombinant Cap protein vaccine was evaluated by PCV2 specific antibody detection and virus attack.【Result】SDS-PAGE and Western blotting results indicated that the optimized ORF2 gene of PCV2 NJ strain could be efficiently expressed in E.coliBL21 in form of completely soluble. Abundant PCV2 VLP with diameter about 17 nm could be observed through electron microscope, exist in supernatant of the induced E.coli after ultrasonication. VLP vaccine composed of recombinant Cap protein possessed satisfactory immunity. Swine immunized with this VLP vaccine generated perfect antibody response with 100% qualified at 21 d post one sole vaccination and could be completely protected from pathogenic virus attack.【Conclusion】To summarize, optimized ORF2 gene of PCV2 NJ strain was successfully expressed in E.coli completely soluble and recombinant Cap protein can auto-assemble into VLP particles after ultrasonication. The VLP particles pose perfect immunity and could be used as subunit vaccines to prevent PCV2 infection.
porcine circovirus type 2;
ORF2 gene;
soluble expression;
VLP particles;
immunogenicity
0 引言【研究意义】猪圆环病毒2型(Porcine circovirus type 2, PCV2)是引起断奶仔猪多系统衰竭综合征的主要病原。自1991加拿大首次报道PMWS以来, 该病现已波及世界各地, 是全球公认的危害养猪业的重要传染病之一, 在中国猪群中流行也十分严重[, , ]。尽管通过改善饲养环境、减少应激等因素可以避免感染猪出现临床征状, 但不能完全抑制PCV2的感染, 一旦外界因素改变, 极易引起感染猪发病, 给养猪业造成严重的损失[, , ]。因此, 利用疫苗免疫预防是解决PCV2流行问题的关键[]。【前人研究进展】由ORF2编码的核衣壳蛋白(Cap)是PCV2主要的免疫原性蛋白。已有研究发现Cap蛋白可自我组装成病毒样颗粒[, ]。美国勃林格公司和法国英特威公司利用杆状病毒表达系统研究的Cap蛋白亚单位疫苗对猪有良好的免疫保护效果, 已经商品化生产, 但其价格昂贵[, ]。Nawagitgul等利用杆状病毒表达系统表达了PCV2 Cap蛋白, 并把表达产物用作ELISA检测抗原及亚单位疫苗, 在动物实验中取得良好的效果[]; Sergio等[]在酵母表达系统中表达了PCV2优化的Cap基因, 表达产物可以自发组装成VLP, 表达产物口服免疫小鼠产生了较高的抗体水平; Khayat等[]在大肠杆菌表达系统中表达了删除N基端41个Aa的截短的PCV2 Cap蛋白; Zhou等[]将PCV2 Cap蛋白与谷胱甘肽融合, 在大肠杆菌中获得表达; Wu等[]利用大肠杆菌表达了Δ Flage与全长Cap的融合基因, 表达产物切除Δ Flage后, 全长Cap蛋白在电镜下可见组装成VLP的颗粒, 具有较好免疫原性, 并且作者认为只有表达全长的Cap蛋白才能更好地形成VLP; Yin等[]利用小泛素蛋白与Cap蛋白基因融合在E.coli中表达, 表达产物切除小泛素蛋白后在电镜下可见20 nm左右VLP颗粒; Kong与Liu等[, ]在大肠杆菌与乳酸杆菌表达系统中表达了PCV2 Cap蛋白, 动物实验结果表明, 重组Cap蛋白均有良好的免疫原性。【本研究切入点】目前商品化的PCV2 基因工程亚单位疫苗都是利用杆状病毒表达系统表达的, 杆状病毒表达系统具有真核表达系统翻译后修饰的优点, 但是也有其缺点, 如表达量低、疫苗生产成本高、周期长等缺点。Cap蛋白为核衣壳蛋白, 不存在蛋白的糖基化与磷酸化, 加之基因长度比较小[], 如果能够在对基因进行合理的优化, 选择合适的大肠杆菌表达系统的基础上, 实现Cap蛋白在E.coli中的可溶性表达并组装成VLP, 结合E.coli表达的低成本、高表达量、表达周期短等优点, 对于PCV2 基因工程亚单位疫苗的研究具有非常重要的意义。【拟解决的关键问题】实现PCV2 Cap蛋白全长在大肠杆菌表达系统中的可溶性表达及表达产物的免疫效力评价, 为研制安全有效的PCV2亚单位疫苗奠定基础。1 材料与方法1.1 试验材料PCV2 NJ株为b基因型的强毒株, 由国家兽用生物制品工程技术研究中心在2008年分离鉴定、保存, 利用PK15细胞增殖滴度可达106.0TCID50· mL-1, 该病毒F3— F6代按照兽用生物制品质量标准汇编中公布的PCV2疫苗攻毒效检程序攻毒, 可致50日龄左右的PCV2抗原抗体阴性仔猪明显的肺部与相关淋巴结病变(未发表资料); PCV2 NJ株ORF2基因的优化合成由上海英骏生物技术有限公司完成; 原核表达平台CVC1102由国家兽用生物制品工程技术研究中心构建、保存; 免疫增强剂CVC1301与CVC1302由国家兽用生物制品工程技术研究中心筛选, 并且对FMDV灭活疫苗及PEDV灭活疫苗等多种抗原的免疫增强效果已经得到验证; 商品疫苗为勃林格公司利用昆虫细胞表达生产的基因工程疫苗; 限制性内切酶、T4DNA连接酶、PCR试剂及pMD18-T载体购于TaKaRa公司; 质粒提取试剂及胶回收试剂盒为Axygen公司产品; DH5α 感受态细胞购于北京BioMed公司; 猪抗PCV2多克隆抗体购自美国VRDM公司; HRP标记羊抗猪抗体为KPL公司产品; 实验动物购自江苏省丹阳市云立生态牧业有限公司, 试验前利用ELISA试剂盒检测PCV2抗体, 利用PCR法检测PCV2核酸, 确保每头试验猪均为PCV2抗原抗体阴性, 后续整个实验过程于2013年11月至2014年1月在江苏省农业科学院国家兽用生物制品工程技术研究中心实验动物房进行; 用于检测PCV2抗体的间接ELISA试剂盒购自武汉科前生物科技有限公司; 其余试剂均为国产或进口分析纯。1.2 优化的ORF2基因片段的获得根据PCV2b亚型基因组中ORF2基因序列(GenBank登录号:KC), 利用Primer Premier 5.0生物软件设计出一对特异性引物。利用SDS-PK法提取PCV2 NJ株的DNA, 以PCV2 NJ株基因组为模板, 扩增ORF2基因并测序; 根据大肠杆菌密码子偏好, 将扩增得到的基因进行密码子优化、合成, 得到密码子优化的PCV2 NJ株ORF2。为了便于基因的克隆, 在密码子优化后的基因序列5′ 端和3′ 端分别添加了酶切位点NdeⅠ 与BamHⅠ , 优化的ORF2基因由上海英骏生物技术有限公司合成, 克隆入pMD18-T载体, 获得重组质粒pMD-Cap。1.3 重组质粒的构建将重组质粒pMD-Cap和表达载体pQZ1分别用NdeⅠ 和BamHⅠ 双酶切。酶切产物经琼脂糖电泳鉴定后切胶回收, 回收产物经T4 DNA连接酶16℃连接过夜, 将连接产物转化E.coli DH5α 感受态细胞, 涂布含氨苄青霉素的LB平板, 37℃培养。挑取单菌落接种液体LB扩大培养, 提取质粒酶切鉴定, 阳性质粒命名为pQZ-Cap。1.4 重组菌的构建与诱导表达1.4.1 将pQZ-Cap转化感受态大肠杆菌BL21 将质粒pQZ-Cap转化大肠杆菌BL21, 涂布含氨苄青霉素的LB平板, 挑取单菌落, 得到重组菌pQZ-Cap/BL21。将空质粒pQZ1按照相同的方法转化感受态大肠杆菌BL21, 得到对照菌株pQZ /BL21。1.4.2 重组菌的诱导表达 挑取重组菌pQZ-Cap/BL21与pQZ/BL21单菌落, 接种4 mL含氨苄青霉素的LB液体培养基中, 37℃振荡培养过夜, 作为种子液。次日将种子液按1﹕100比例转接含新的氨苄青霉素的LB液体培养基, 37℃, 220 r/min, 振荡培养1.5— 2 h(OD600达0.5&#x0), 加入终浓度为1 mmol· L-1的异丙基硫代半乳糖苷(IPTG), 15℃诱导24 h, 收获细菌。1.5 SDS-PAGE分析各取1 mL对照菌株的全菌、重组菌pQZ-Cap/ BL21诱导前全菌和重组菌pQZ-Cap/BL21诱导后全菌, 4℃ 10 000 r/min, 离心10 min, 收集菌体, 用1 mL PBS(pH7.2)缓冲液重悬, 进行SDS-PAGE电泳。1.6 重组Cap蛋白的可溶性分析取10 mL诱导后菌液, 10 000 r/min, 4℃离心10 min, 收集菌体, 用10 mL PBS(pH7.2)缓冲液重悬, 于冰水浴中超声波破碎细菌。破碎后4℃ 12 000 r/min, 离心10 min, 分离上清与沉淀, 沉淀用1mL PBS(pH7.2)缓冲液重悬, SDS-PAGE鉴定重组Cap蛋白的可溶性。1.7 重组Cap蛋白Western blotting鉴定将转印有目的条带的PVDF转移膜用5%脱脂乳4℃封闭过夜。次日弃去脱脂乳, 用含有2% BSA的TBST溶液稀释猪圆环病毒2型阳性血清(1﹕200), 37℃孵育1 h, 随后用TBST充分漂洗5次, 每次洗涤8 再用含2% BSA 的TBST缓冲液稀释HRP标记的羊抗猪二抗(1﹕10 000), 37℃孵育1 h, TBST缓冲液充分漂洗5次, 每次8 按照DAB试剂盒说明书显色。1.8 重组Cap蛋白VLP的电镜观察取诱导后菌液, 10 000 r/min, 4℃离心10 min, 收集菌体, 用1 mL PBS(pH7.2)缓冲液重悬, 于冰水浴中超声波破碎细菌, 取破碎后上清进行电镜观察。取微量上清液滴置于铜网上, 待液体被充分吸收后用PTA染色1 min, 待完全干燥后置电镜下观察。1.9 重组Cap蛋白VLP疫苗的免疫原性鉴定1.9.1 试验用疫苗的制备 大量表达重组Cap蛋白, 超声破碎后的离心上清用硫酸铵盐析的方法进行粗提, 获得重组VLP抗原。把不同剂量的VLP疫苗与法国SPPEIC公司的206佐剂乳化, 制备不同抗原剂量的疫苗, 同时在高剂量组分别添加CVC1301与CVC1302两种免疫增强剂, 以评价VLP疫苗的免疫原性及两种免疫增强剂对重组Cap蛋白VLP疫苗的免疫增强效力, 具体疫苗的配制与实验动物的分组见。表1Table 1表1(Table 1)
表1 试验用疫苗的制备与动物分组
Table 1 Preparation of recombinant Cap VLP vaccine and grouping of animals组别Group免疫增强剂Immunopotentiator免疫滴度Immune dose抗原Antigen剂量Immune volume ( mL)免疫项目Immune program佐剂Adjuvant免疫途径Immune path动物数量Animal amountG1— 300 &#x003 gCap VLP1收集在14和21d免疫后血清抗体的检测Collect the serum for antibody detection at 14 and 21 da virus attack was performed at 28 days post immunization206i.m5G2500 &#x003 gCap VLP12065G3— 800 &#x003 gCap VLP12066G4CVC1301800 &#x003 gCap VLP12065G5CVC1302800 &#x003 gCap VLP12065G6— 1 doseCap VLP1— 5
表1 试验用疫苗的制备与动物分组
Table 1 Preparation of recombinant Cap VLP vaccine and grouping of animals1.9.2 试验猪的筛选与免疫 挑选2— 3周龄健康仔猪, 试验前用武汉科前生物技术有限公司的PCV2抗体ELISA检测试剂盒检测PCV2抗体, 同时利用北京世纪元亨生物技术有限公司的PCR核酸检测试剂盒检测PCV2核酸, 确保每头试验猪抗原抗体均为双阴性。将31头3周龄左右的试验猪随机分为6组, 标记为G1— G6, 分别免疫中所示疫苗, 其中G6组每头猪免疫勃林格公司的商品疫苗1头份, 另设2头猪不做任何免疫, 作为空白对组。1.9.3 免疫猪PCV2特异性抗体检测 免疫后14与21 d, 所有试验猪采血并分离血清, 做400倍稀释, 利用武汉科前生物科技有限公司的PCV2抗体ELISA检测试剂盒检测血清抗体水平。1.9.4 PCV2强毒攻击试验 选取G2、G5、G6及空白对照共4组试验猪, 根据兽用生物制品质量标准汇编中公布的PCV2疫苗攻毒效检程序进行。具体为:免疫后28 d, 选取G2、G5与G6共3组试验猪的两腋下及两臀部注射弗氏完全佐剂乳化的钥匙孔血蓝蛋白(KLH/ICFA, 0.5 mg· mL-1)4.0 mL/头, 同时腹腔注射巯基乙酸培养基10 mL/头。免疫后35 d, 用PCV2 NJ株强毒(含105.0TCID50· mL-1)攻击, 每头滴鼻1.0 mL, 肌肉注射8.0 mL, 观察25 d。攻毒后第4天, 分别在猪的两腋下及两臀部注射弗氏完全佐剂乳化的钥匙孔血蓝蛋白(KLH/ICFA, 0.5 mg· mL-1)4.0 mL/头, 同时腹腔注射巯基乙酸培养基10 mL/头; 攻毒后第11、19天, 试验猪腹腔注射巯基乙酸培养基10 mL/头。另购2头相近日龄PCV2 抗原抗体阴性仔猪为不免疫不攻毒对照组, 隔离饲养, 观察期结束, 扑杀剖检。根据各组试验猪的体温变化、平均日增重指数、大体剖检变化及样品组织PCV2核酸检测等方面评价重组VLP疫苗的免疫效力。2 结果2.1 目的基因优化PCV2 NJ株ORF2基因序列与设计引物的模板毒株(GenBank登录号:KC)核酸同源性为93.5%, 氨基酸同源性为92.3%。对PCV2 NJ株ORF2基因按照E.coli表达系统优化结果见。图1Fig. 1 图1 PCV2 NJ 株ORF2基因优化红色碱基代表优化前后不一致Fig. 1 Optimation results for PCV2 NJ strainRed means the different bases following optimation2.2 重组表达载体的鉴定构建的重组质粒pQZ-Cap用NdeⅠ 与 BamHⅠ 双酶切, 酶切产物经1%的琼脂糖凝胶电泳, 溴化乙锭染色后, 在紫外线下可见约5 000 bp的载体片段和702 bp大小的目的条带, 与预期片段大小相符()。图2Fig. 2 图2 pQZ-Cap酶切鉴定1、2、3、4:重组质粒pQZ-Cap 用NdeⅠ 与 BamHⅠ 双酶切; 5:空质粒对照pQZ用NdeⅠ 与 BamHⅠ 双酶切; M:DNA分子量Marker(DL10000)Fig. 2 Identification of the recombinant plasmid1, 2, 3, 4: Recombinant plasmid pQZ-Cap digested with NdeⅠ and BamHⅠ ; 5: Plasmid control of pQZ1; M: DNA molecular weight marker (DL10000)2.3 重组蛋白的SDS-PAGE鉴定经SDS-PAGE电泳分析, 与对照菌pQZ/BL21和未诱导的重组菌相比, 在约27kD处明显多出一条蛋白条带, 与预期结果相符(), 说明重组菌pQZ-Cap/ BL21在IPTG诱导下成功获得表达。图3Fig. 3 图3 重组蛋白表达SDS-PAGE鉴定1:pQZ/BL21诱导后; 2:重组菌pQZ-Cap /BL21未诱导; 3、4:重组菌pQZ-Cap /BL21诱导后; M:蛋白质分子量标准Fig. 3 Identification of the expressing recombinant protein with SDS-PAGE analysis1: IPTG induced blank plasmid pQZ1/BL21; 2: Recombinant bacterium pQZ-Cap/BL21 without IPTG; 3, 4: Whole bacterium pQZ-Cap/BL21 after IPTG- M: Broad protein molecular weight marker2.4 重组蛋白的可溶性分析收获诱导后菌体进行超声波破碎, 对重组菌pQZ- Cap/BL21诱导前全菌、诱导后全菌、超声波破碎后上清和破碎后沉淀进行SDS-PAGE鉴定。结果表明, 重组菌pQZ-Cap/BL21诱导表达产物均在上清中, 目的蛋白以完全可溶的形式存在()。图4Fig. 4 图4 重组蛋白的可溶性分析M:蛋白质分子量标准; 1:重组菌pQZ-Cap /BL21未诱导; 2:重组菌pQZ-Cap /BL21诱导后; 3:重组菌pQZ-Cap/BL21诱导破碎后离心上清; 4:重组菌pQZ-Cap/BL21诱导破碎后离心沉淀Fig. 4 The solubility of the expressing recombinant proteinM: Broad protein mol 1: pQZ-Cap/BL21 without IPTG 2: pQZ-Cap/BL21with IPTG 3: Supernatant of pQZ-Cap/BL21 after su 4: Inclusion body for pQZ- Cap/BL21 after supersonic schizolysis2.5 重组菌表达产物的Western blotting分析取诱导后的对照菌pQZ1/BL21、重组菌破碎后上清及沉淀, 经SDS-PAGE电泳后转膜, 进行Western blotting鉴定, 在目的条带大小位置(27 kD)出现一条明显的棕色印迹, 而对照菌pQZ1/BL21与重组菌破碎后沉淀对应泳道在相应位置则无颜色反应条带(), 这说明表达产物可被PCV2多克隆抗体特异性识别, 具有较好的抗原性。图5Fig. 5 图5 重组蛋白Western blotting鉴定M:蛋白质分子量标准; 1:重组菌pQZ/BL21 IPTG诱导后; 2:重组菌pQZ-Cap /BL21 IPTG诱导破碎后离心上清; 3:重组菌pQZ-Cap/BL21 IPTG诱导破碎后离心沉淀Fig. 5 Western blotting analysis for recombinant proteinM: Pre-stained protein mol 1: IPTG Induced pQZ/BL21; 2: Supernatant of pQZ-Cap/BL21 after su 3: Inclusion body for pQZ-Cap/BL21 after supersonic schizolysis2.6 重组菌的电镜观察将重组Cap蛋白经过PBS缓冲液(浓度为0.05 mol· L-1, pH7.2)透析后, 进行磷酸钨染色透射电镜观察。从可见, 重组猪圆环病毒2型Cap蛋白可大量组装成直径在20 nm左右的猪圆环病毒2型病毒样颗粒。图6Fig. 6 图6 重组蛋白组装形成VLP的电镜观察Fig. 6 Transmission electron micrographs scanning of recombinant proteins2.7 试验猪PCV2特异性抗体检测由、可见, 不同抗原剂量的重组VLP疫苗及商品疫苗均可以诱导试验猪产生针对PCV2 Cap蛋白的特异性抗体, 在免疫不同抗原剂量的试验组中, 500 &#x003 g抗原免疫组与800 &#x003 g抗原免疫组产生了较高的特异性抗体。该结果表明, 利用大肠杆菌表达的Cap蛋白具有良好的免疫原性。图7Fig. 7 图7 不同剂量抗原免疫后14 d抗体检测结果Fig. 7 PCV2 specific antibody of animals 14 days post immunization with different doses图8Fig. 8 图8 不同剂量抗原免疫后21d抗体检测结果Fig. 8 PCV2 specific antibody of animals 21 days post immunization with different doses2.8 免疫增强剂对VLP抗原的免疫增强进一步比较两组添加免疫增强剂的高剂量试验组, 添加免疫增强剂CVC1302可以进一步提高206佐剂疫苗免疫后的抗体水平及缩短抗体产生期, 该免疫组在免疫后14 d抗体即可达到100%(5/5)合格, 而对照组只有50%(3/6)抗体合格。该结果表明, CVC1302能够非常明显地增强VLP抗原免疫后的抗体水平()。图9Fig. 9 图9 免疫增强剂对VLP抗原的免疫增强作用Fig. 9 Immunoenhancement effect on VLP antigen of CVC1301 and CVC13022.9 试验猪攻毒后平均日增重从可以看出, 不免疫攻毒对照试验猪在攻毒后平均日增重指数明显降低, 而免疫自制苗(G2、G5)及勃林格疫苗(G6)的试验组攻毒后平均日增重指数明显高于不免疫攻毒对照, 差异极显著, 而与不免疫不攻毒对照组之间差异不显著, 说明免疫自制VLP疫苗可以提高和改善PCV2攻毒后试验猪的平均日增重指数。
试验猪攻毒后平均日增重指数 Average index weight gain number of the animals post PCV2 attack2.10 试验猪攻毒后体温变化从可以看出, 试验猪攻毒后, 不免疫攻毒对照组出现了明显的体温升高, 连续3 d高于40℃, 符合PCV2强毒攻毒后发病判定标准, 而免疫自制VLP疫苗的试验组(G2、G5)与勃林格疫苗免疫组(G6), 攻毒后体温没有明显的升高, 与不免疫不攻毒组一致。
试验猪攻毒后体温变化 Body temperature changes of the animals post PCV2 attack2.11 攻毒猪大体解剖病变从、可以看出, 不免疫攻毒对照组攻毒后肺脏与淋巴结出现明显病变, 而G2、G5及勃林格疫苗免疫组(G6)攻毒后肺脏与淋巴结无明显变化, 与不免疫不攻毒对照组相似。
攻毒试验猪淋巴结病变A:免疫VLP疫苗试验猪支气管相关淋巴结病变; B:|免疫含免疫增强剂VLP疫苗试验猪支气管相关淋巴结病变; C:免疫勃林格商品疫苗试验猪支气管相关淋巴结病变; D:不免疫不攻毒对照猪支气管相关淋巴结病变; E:不免疫攻毒对照猪支气管相关淋巴结病变 Lymph nodes pathological changes of animals post PCV2 attackA: Animals immunized with recombinant VLP B: Animals immunized with recombinant VLP vaccine plus CVC1302; C: Animals immunized with recombinant vac D: Animals with no vaccinat E: Animals with PCV2 attack but without vaccination
攻毒试验猪肺部解剖病变A:免疫VLP疫苗试验猪肺脏病变; B:免疫含免疫增强剂VLP疫苗试验猪肺脏病变; C:免疫勃林格商品疫苗试验猪肺脏病变; D:不免疫不攻毒对照猪肺脏病变; E:不免疫攻毒对照猪肺脏病变 Lung pathological changes of animals post PCV2 attackA: Animals immunized with recombinant VLP B: Animals immunized with recombinant VLP vaccine plus CVC1302; C: Animals immunized with recombinant vac D: Animals with no vaccinat E: Animals with PCV2 attack but without vaccination2.12 攻毒猪肺脏组织PCV2核酸检测结果利用PCR法检测攻毒试验猪肺脏组织中PCV2核酸。如所示, 攻毒后28 d, 只有不免疫只攻毒对照组可以检测到PCV2核酸的存在, 说明本试验中制备的VLP疫苗免疫后能够有效阻止PCV2在猪体内的复制, 这与免疫组化检测的结果(未发表数据)是相符合的。
攻毒试验猪肺脏PCV2特异性核酸检测1:DNA分子量Marker(DL2000); 2:不免疫攻毒对照猪肺组织PCV2核酸检测结果; 3:免疫含免疫增强剂VLP疫苗试验猪肺组织PCV2核酸检测结果; 4:免疫勃林格商品疫苗试验猪肺组织PCV2核酸检测结果; 5:不免疫不攻毒对照猪肺组织PCV2核酸检测结果 Results for PCV2 specific DNA detection of animals post PCV2 attack1: DNA molecular marker (DL2000); 2: PCV2 DNA detection from lung tissue for animals with PCV2 attack but 3: PCV2 DNA detection from lung tissue for animals immunized with recombinant VLP vaccine plus CVC1302; 4: PCV2 DNA detection from lung tissue for animals immunized with recombinant vac 5: PCV2 DNA detection from lung tissue for animals with no vaccination and no challenge3 讨论猪圆环病毒2型与猪的多种疾病综合征有关, 包括断奶仔猪多系统衰竭综合征、猪皮炎/肾病综合征、仔猪先天性震颤、母猪流产、猪增生性/坏死性肺炎等, 严重危害养猪业的健康发展, 其中研究比较深入的是断奶仔猪多系统衰竭综合征(PMWS)[]。PMWS已遍布世界各个养猪国家, 其危害已经被人们所认识。尽管通过改善饲养环境、减少应激等因素可以避免感染猪出现临床症状, 但不能完全抑制PCV2的感染, 一旦外界因素改变, 极易引起感染猪发病, 给养猪业造成严重的损失, 因此, 预防是解决PCV2感染问题的关键[]。血清学分析表明PCV2可以诱导体液免疫, 长期的被动免疫可以抵抗PCV2的感染和减轻PMWS的症状, 因此疫苗免疫是防制PCV2感染的有效手段之一[]。PCV2 生物学特性比较特殊, 它在细胞上增殖滴度很低, 不引起细胞病变, 而且PCV2的病毒DNA存在免疫抑制, 使用D-氨基葡萄糖处理细胞后病毒滴度可以升高, 但D-氨基葡萄糖有细胞毒性而使细胞很快死亡, 因此发展传统的灭活疫苗和弱毒疫苗的难度很大[, , , ]。VLP疫苗是利用表达系统大量表达病毒的相关保护性抗原, 在体外组装而成。由于VLP疫苗只含有病毒衣壳蛋白, 不含核酸, 不仅具有很高的安全性, 而且便于规模化生产, 是具有应用前景的新一代疫苗之一[, , , ]。本研究利用大肠杆菌表达系统实现了对基因优化后Cap蛋白的可溶性表达, 表达产物可以形成直径为17 nm左右的PCV2 病毒样颗粒。利用不同剂量的VLP配合佐剂单次免疫仔猪, ELISA检测表明该VLP疫苗可以诱导猪体产生抗体, 各个免疫剂量产生的抗体滴度虽存在差异, 但明显高于进口疫苗对照组。免疫后28 d进行攻毒保护试验, 攻毒后重组VLP疫苗免疫组不存在体温连续3 d高于40℃的过程; 并且攻毒平均日增重指数明显高于不免疫只攻毒对照组, 与进口疫苗及不免疫不攻毒对照组相类似; 剖杀后肺部病变结果表明, 重组VLP疫苗中剂量免疫组及高剂量配合免疫增强剂免疫组的病变程度与勃林格疫苗及不免疫不攻毒对照组相类似, 明显轻于攻毒对照组; 支气管淋巴结和肺脏组织中PCV2核酸检测结果也表明重组VLP疫苗免疫的免疫猪攻毒后消除了病毒的感染, 在攻毒组中所有试验猪均检测到PCV2核酸的存在。表明该疫苗免疫一定剂量后可以明显提高日增重、减轻病变和减少病毒含量。本研究所获得的PCV2 亚单位疫苗在免疫攻毒保护效力上与勃林格生产的同类制品疫苗相比没有明显的差异, 但是利用大肠杆菌表达系统生产VLP疫苗的成本要远远低于利用昆虫细胞生产疫苗。在后续研究中, 为适应发酵罐大批培养, 发展PCV2 VLP疫苗的工艺化生产, 应该对重组蛋白表达菌株的表达条件进行优化, 并进一步提高可溶性蛋白的比例; 在亚单位疫苗免疫原性评价方面, 要对该亚单位疫苗的免疫原性进行更详细的研究, 包括免疫剂量、抗体持续期、抗原保存期、免疫攻毒保护水平等。4 结论本研究利用大肠菌表达系统获得PCV2病毒样颗粒制备的亚单位疫苗具有良好的免疫原性, 单次免疫猪体后可以降低发病率, 增加日增重, 减轻发病症状, 清除或减少血液和组织器官中的病毒, 对猪体具有明显的保护作用。从本研究的结果来看VLP疫苗是一个具有良好发展前景的PCV2亚单位疫苗。
The authors have declared that no competing interests exist.
Allan G M, Ellis J A.
Porcine circoviruses: a review. Journal of Veterinary Diagnostic Investigation, 2000(12): 3-14.
[本文引用:1]
[JCR: 1.181]
Allen G M, McNeilly F, Cassidy J P, Reilly G A C, Adair B, Ellis W A, McNulty M S.
Pathogenesis o experimental infections of colostrum deprived piglets and
examination of pig foetal material. Veterinary Microbiology, 1995(44): 49-64.
[本文引用:1]
[JCR: 3.127]
review of porcine circovirus 2-associated syndromes and
diseases. Veterinary Journal, 2005(169): 326-336.
[本文引用:2]
[JCR: 2.424]
Meehan B M, McNcilly F, Todd D, Kennedy S, Jewhurst V A, Ellis J A, Hassard L E, Clark E G, Haines D M, Allan G M.
Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. Journal of General Virology, 1998(79): 2171-2179.
[本文引用:1]
[JCR: 3.127]
Silva F M, Silva J&#x000nior A, Vidigal P M, Oliveira C R, Viana V W, Silva C H, Vargas M I, Fietto J L, Almeida M R.
Porcine circovirus-2 viral load versus lesions in pigs: perspectives for post-weaning multisystemic wasting syndrome.
[本文引用:1]
[JCR: 1.376]
Guo L J, Lu Y H, Wei Y W, Huang L P, Liu C M.
Porcine circovirus type 2 (PCV2): genetic variation and
newly emerging genotypes in China. Veterinary Journal, 2010, 19(7): 273.
[本文引用:1]
[JCR: 2.424]
Crowther R A, Berriman J A, Curran W L, Allan G M, Todd D.
Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and
feather disease virus. Journal of Virology, 2003(77): 13036-13041.
[本文引用:1]
[JCR: 5.076]
Porntippa Nawagitgul, Igor Morozov, Bolin S R, Harms P A, Sorden S D, Paul P S.
Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. Journal of General Virology, 2000, 81: 2281-2287.
[本文引用:1]
[JCR: 3.127]
Blanchard P, Mahe D, Cariolet R, Keranflech A, Baudouard M A, Cordioli P, Albina E, Jestin A.
Protection of swine against post-weaning multisystemic wasting syndrome (PMWS) by porcine circovirus type 2 (PCV2) proteins. Vaccine, 2003(21): 4565-4575.
[本文引用:1]
[JCR: 3.492]
Ellis J, Clark E, Haines D, West K, Krakowka S, Kennedy S.
Virus-like particles: The new frontier of vaccines for animal viral infections. Veterinary Immunology and
Immunopathology, 2012(148): 211-225.
[本文引用:1]
[JCR: 1.877]
Nawagitgul P, Harms P A, Morozov I, Thacker B J, Sorden S D, Lekcharoensuk C, Paul P S.
Modified indirect porcine circovirus (PCV) type 2-based and
recimbinant capsid protein (ORF2)-based enzyme-linked immunosorbent assays for detection of antibodies to PCV. Clinical and
Diagnostic Laboratory Immunology, 2002(9): 33-40.
[本文引用:1]
[JCR: 2.511]
Sergio A B, Jorge N, Paulina R, Cecilia T, Leonardo S, Alejand ro Z, Jaime A T.
The optimized capsid gene of porcine circovirus type 2 expressed in yeast forms virus-like particles and
elicits antibody responses in mice fed with recombinant yeast extracts.
[本文引用:1]
[JCR: 3.492]
Khayat R, Brunn N, Speir J A, Hardham J M, Ankenbauer R G, Schneemann A, Johnson J E.
The 2. 3-angstrom structure of porcine circovirus 2. Journal of Virology, 2011(8): 7856-7862.
[本文引用:1]
[JCR: 5.076]
Zhou J Y, Shang S B, Gong H, Chen Q X, Wu J X, Shen H G, Chen T F, Guo J Q.
In vitro expression, monoclonal antibody and
bioactivity for capsid protein of porcine circovirus type II without nuclear localization signal. Journal of Biotechnology, 2005(118): 201-211.
[本文引用:1]
[JCR: 3.183]
Wu P C, Lin W L, Wu C M, Chi J N, Chien M S, Huang C J.
Characterization of porcine circovirus type 2 (PCV2) capsid particle assembly and
its application to virus-like particle vaccine development.
[本文引用:1]
[JCR: 3.689]
Yin S H, Sun S Q, Yang S L, Shang Y J, Cai X P, Liu X T.
Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli. Veterinary Journal, 2010(7): 166-170.
[本文引用:1]
[JCR: 2.424]
Kong W T, Kong J, Hu S M, Lu W W, Wang K, Ji M J.
Enhanced expression of PCV2 capsid protein in Escherichia coli and
Lactococcus lactis by codon optimization. World Journal of Microbiology Biotechnology, 2011(27): 651-657.
[本文引用:1]
[JCR: 1.262]
Liu Q, Willson P, Attoh-Poku S, Babiuk L A.
Bacterial expression of an immunologically reactive PCV2 ORF2 fusion protein.
[本文引用:1]
[JCR: 1.429]
Tischer I, Gelderblom H, Vettermann W, Koch M A.
A very small porcine virus with circular single-strand ed DNA.
[本文引用:1]
[JCR: 38.597]
Darwich L, Mateu E.
Immunology of porcine circovirus type 2 (PCV2). Virus Research, 2012(164): 61-67.
[本文引用:1]
Lekcharoensuk P, Morozov I, Paul P S, Thangthumniyom N, Wajjawalku W, Meng X J.
Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and
[本文引用:1]
[JCR: 5.076]
Beach N M, Meng X J.
Efficacy and
future prospects of commercially available and
experimental vaccinea agast porcine circovirus type 2.
[本文引用:1]
[JCR: 2.745]
Yang X, Chen F W, Cao Y H, Pang D X, Ouyang H S, Ren L Z.
Comparative analysis of different methods to enhance porcine circovirus 2 replication.
[本文引用:1]
[JCR: 1.9]
Tischer I, Peters D, Rasch R, Pociuli S.
Replication of porcine circovirus: induction by glucosamine and
cell cycle dependence.
[本文引用:1]
[JCR: 2.03]
Gabriel Chena H C, Kuob T Y, Yangb Y C, Wuc C C, Lai S S.
Highly permissive subclone of the porcine kidney cell line for porcine circovirus type 2 production.
[本文引用:1]
[JCR: 1.9]
Fenaux M, Halbur P G, Haqshenas G, Royer R, Thomas P, Nawagitgul P, Gill M, Toth T E, Meng X J.
Cloned genomic DNA of type2 porcine circovirus is infectious when injected directly into the liver and
lymph nodes of pigs: characterization of clinical disease virus distribution, and
pathologic lesions.
[本文引用:1]
[JCR: 5.076]
Ludwig C, Wagner R.
Virus-like particles-universal molecular toolboxes.
[本文引用:1]
[JCR: 7.86]
Grgacic E V L, Anderson D A.
Virus-like particles: Passport to immune recognition. Methods, 2006(40): 60-65.
[本文引用:1]
[JCR: 3.641]
Kumann J, Sydler T, Brugnera E, Buergi E, Haessig M, Suter M, Sidler X.
Vaccination of dams increases antibody titer and
improves growth parameters in finisher pigs subclinical lyinfected with porcine circorus type 2.
[本文引用:1]
[JCR: 2.598]
Trible B R, Ramirez A, Suddith A, Fuller A, Kerrigan M, Hesse R, Nietfeld J, Guo B Q, Thacker E, Rowland
Antibody responses following vaccination versus infection in a porcine circovirus-type 2 (PCV2) disease model show distinct differences in virus neutralization and
epitope recognition. Vaccine, 2012(30): 4079-4085.
[本文引用:1]
[JCR: 3.492]
... 自1991加拿大首次报道PMWS以来,该病现已波及世界各地,是全球公认的危害养猪业的重要传染病之一,在中国猪群中流行也十分严重[1,2,3] ...
... 自1991加拿大首次报道PMWS以来,该病现已波及世界各地,是全球公认的危害养猪业的重要传染病之一,在中国猪群中流行也十分严重[1,2,3] ...
... 自1991加拿大首次报道PMWS以来,该病现已波及世界各地,是全球公认的危害养猪业的重要传染病之一,在中国猪群中流行也十分严重[1,2,3] ...
... 因此,利用疫苗免疫预防是解决PCV2流行问题的关键[3] ...
... 尽管通过改善饲养环境、减少应激等因素可以避免感染猪出现临床征状,但不能完全抑制PCV2的感染,一旦外界因素改变,极易引起感染猪发病,给养猪业造成严重的损失[4,5,6] ...
... 尽管通过改善饲养环境、减少应激等因素可以避免感染猪出现临床征状,但不能完全抑制PCV2的感染,一旦外界因素改变,极易引起感染猪发病,给养猪业造成严重的损失[4,5,6] ...
... 尽管通过改善饲养环境、减少应激等因素可以避免感染猪出现临床征状,但不能完全抑制PCV2的感染,一旦外界因素改变,极易引起感染猪发病,给养猪业造成严重的损失[4,5,6] ...
... 已有研究发现Cap蛋白可自我组装成病毒样颗粒[7,8] ...
... 已有研究发现Cap蛋白可自我组装成病毒样颗粒[7,8] ...
... 美国勃林格公司和法国英特威公司利用杆状病毒表达系统研究的Cap蛋白亚单位疫苗对猪有良好的免疫保护效果,已经商品化生产,但其价格昂贵[9,10] ...
... 美国勃林格公司和法国英特威公司利用杆状病毒表达系统研究的Cap蛋白亚单位疫苗对猪有良好的免疫保护效果,已经商品化生产,但其价格昂贵[9,10] ...
... Nawagitgul等利用杆状病毒表达系统表达了PCV2 Cap蛋白,并把表达产物用作ELISA检测抗原及亚单位疫苗,在动物实验中取得良好的效果[11] ...
. 2009, (27):
Abstract Porcine circovirus type 2 (PCV2)-associated diseases are considered to be the biggest problem for the worldwide swine industry. The PCV2 capsid protein (Cap) is an important antigen for development of vaccines. At present, most anti-PCV2 vaccines are produced as injectable formulations. Although effective, these vaccines have certain drawbacks, including stress with concomitant immunosuppresion, and involve laborious and time-consuming procedures. In this study, Saccharomyces cerevisiae was used as a vehicle to deliver PCV2 antigen in a preliminary attempt to develop an oral vaccine, and its immunogenic potential in mice was tested after oral gavage-mediated delivery. The cap gene with a yeast-optimized codon usage sequence ( opt - cap ) was chemically synthesized and cloned into Escherichia coli / Saccharomyces cerevisiae shuttle vector, pYES2, under the control of the Gal1 promoter. Intracellular expression of the Cap protein was confirmed by Western blot analysis and its antigenic properties were compared with those of baculovirus/insect cell-produced Cap protein derived from the native PCV2 cap gene. It was further demonstrated by electron micrography that the yeast-derived PCV2 Cap protein self-assembles into virus-like particles (VLPs) that are morphologically and antigenically similar to insect cell-derived VLPs. Feeding raw yeast extract containing Cap protein to mice elicited both serum- and fecal-specific antibodies against the antigen. These results show that it is feasible to use S. cerevisiae as a safe and simple system to produce PCV2 virus-like particles, and that oral yeast-mediated antigen delivery is an alternative strategy to efficiently induce anti-PCV2 antibodies in a mouse model, which is worthy of further investigation in swine.
... Sergio等[12]在酵母表达系统中表达了PCV2优化的Cap基因,表达产物可以自发组装成VLP,表达产物口服免疫小鼠产生了较高的抗体水平 ...
... Khayat等[13]在大肠杆菌表达系统中表达了删除N基端41个Aa的截短的PCV2 Cap蛋白 ...
... Zhou等[14]将PCV2 Cap蛋白与谷胱甘肽融合,在大肠杆菌中获得表达 ...
. 2012, (95):
1. Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, Republic of China
2. Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, Republic of China
Abstract Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated diseases in pigs. The sole structural capsid protein of PCV2, Cap, consists of major antigenic domains, but little is known about the assembly of capsid particles. The purpose of this study is to produce a large amount of Cap protein using Escherichia coli expression system for further studying the essential sequences contributing to formation of particles. By using codon optimization of rare arginine codons near the 5′-end of the cap gene for E. coli , a full-length Cap without any fusion tag recombinant protein (Cap1-233) was expressed and proceeded to form virus-like particles (VLPs) in normal Cap appearance that resembled the authentic PCV2 capsid. The N-terminal deletion mutant (Cap51-233) deleted the nuclear localization signal (NLS) domain, while the internal deletion mutant (CapΔ51-103) deleted a likely dimerization domain that failed to form VLPs. The unique Cys108 substitution mutant (CapC/S) exhibited most irregular aggregates, and only few VLPs were formed. These results suggest that the N-terminal region within the residues 1 to 103 possessing the NLS and dimerization domains are essential for self-assembly of stable Cap VLPs, and the unique Cys108 plays an important role in the integrity of VLPs. The immunogenicity of PCV2 VLPs was further evaluated by immunization of pigs followed by challenge infection. The Cap1-233-immunized pigs demonstrated specific antibody immune responses and are prevented from PCV2 challenge, thus implying its potential use for a VLP-based PCV2 vaccine.
... Wu等[15]利用大肠杆菌表达了#cod#x00394 ...
... Yin等[16]利用小泛素蛋白与Cap蛋白基因融合在E ...
... Kong与Liu等[17,18]在大肠杆菌与乳酸杆菌表达系统中表达了PCV2 Cap蛋白,动物实验结果表明,重组Cap蛋白均有良好的免疫原性 ...
... Kong与Liu等[17,18]在大肠杆菌与乳酸杆菌表达系统中表达了PCV2 Cap蛋白,动物实验结果表明,重组Cap蛋白均有良好的免疫原性 ...
... Cap蛋白为核衣壳蛋白,不存在蛋白的糖基化与磷酸化,加之基因长度比较小[19],如果能够在对基因进行合理的优化,选择合适的大肠杆菌表达系统的基础上,实现Cap蛋白在E ...
... 3 讨论猪圆环病毒2型与猪的多种疾病综合征有关,包括断奶仔猪多系统衰竭综合征、猪皮炎/肾病综合征、仔猪先天性震颤、母猪流产、猪增生性/坏死性肺炎等,严重危害养猪业的健康发展,其中研究比较深入的是断奶仔猪多系统衰竭综合征(PMWS)[20] ...
... 尽管通过改善饲养环境、减少应激等因素可以避免感染猪出现临床症状,但不能完全抑制PCV2的感染,一旦外界因素改变,极易引起感染猪发病,给养猪业造成严重的损失,因此,预防是解决PCV2感染问题的关键[21] ...
... 血清学分析表明PCV2可以诱导体液免疫,长期的被动免疫可以抵抗PCV2的感染和减轻PMWS的症状,因此疫苗免疫是防制PCV2感染的有效手段之一[22] ...
. 2013, (187):368-371
Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
Porcine circovirus 2 (PCV2) is an extremely slow-growing virus, and PCV2 infection and replication in cell culture yield very low viral titers. The effects of different methods of PCV2 cultivation in vitro were compared with the purpose of increasing viral yield. The results showed that treatment with IL-2, ConA, and d -glucosamine increased PCV2 yield more effectively than other treatments. Additionally, treatment with IL-2, ConA, d -glucosamine and MβCD consistently increased PCV2 infection in PK-15 cells during consecutive viral passages. A combinatorial treatment with ConA, MβCD and d -glucosamine increased PCV2 yield significantly in PK-15 cells, to 1.81 & 10 10  genome copy numbers per mL of cell lysate at 72 hpi, and the viral titer (&lg TCID50/100 μL) was 8.6. The results of this study may be helpful for the investigation of PCV2 replication and the production of a PCV2 vaccine.
... PCV2 生物学特性比较特殊,它在细胞上增殖滴度很低,不引起细胞病变,而且PCV2的病毒DNA存在免疫抑制,使用D-氨基葡萄糖处理细胞后病毒滴度可以升高,但D-氨基葡萄糖有细胞毒性而使细胞很快死亡,因此发展传统的灭活疫苗和弱毒疫苗的难度很大[23,24,25,26] ...
... PCV2 生物学特性比较特殊,它在细胞上增殖滴度很低,不引起细胞病变,而且PCV2的病毒DNA存在免疫抑制,使用D-氨基葡萄糖处理细胞后病毒滴度可以升高,但D-氨基葡萄糖有细胞毒性而使细胞很快死亡,因此发展传统的灭活疫苗和弱毒疫苗的难度很大[23,24,25,26] ...
. 2013, (187):380-383
a School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
b Department of Biotechnology and Animal Science, National Ilan University, Ilan 26041, Taiwan
c SBC Virbac Biotech Co., Ltd., Taipei 11493, Taiwan
This study established a highly permissive and decontaminated cell line for growing porcine circovirus type 2 (PCV2). A porcine kidney-15 cell line (PK-15) contaminated with porcine circovirus type 1 (PCV1) was decontaminated by neutralizing with rabbit anti-PCV1 hyperimmune serum. Subsequently, by limiting dilution and cell subcloning, four PCV1-free monoclonal cells were grown to monolayers. Each cell clone and PK-15 cell were infected with PCV2. The PKKC cell clone yielded up to 10 6.8  TCID 50 /ml at 6 days post-infection. In addition, PKKC was free of extraneous viral contamination and exhibited a cytopathic effect (CPE) to PCV2 at 6 days post-infection. The advantages of the PKKC cell are that it can grow a high PCV2 titer and exhibit CPE; therefore, it can be used for PCV2 cultivation, vaccine production, and diagnostic purposes.
... PCV2 生物学特性比较特殊,它在细胞上增殖滴度很低,不引起细胞病变,而且PCV2的病毒DNA存在免疫抑制,使用D-氨基葡萄糖处理细胞后病毒滴度可以升高,但D-氨基葡萄糖有细胞毒性而使细胞很快死亡,因此发展传统的灭活疫苗和弱毒疫苗的难度很大[23,24,25,26] ...
... PCV2 生物学特性比较特殊,它在细胞上增殖滴度很低,不引起细胞病变,而且PCV2的病毒DNA存在免疫抑制,使用D-氨基葡萄糖处理细胞后病毒滴度可以升高,但D-氨基葡萄糖有细胞毒性而使细胞很快死亡,因此发展传统的灭活疫苗和弱毒疫苗的难度很大[23,24,25,26] ...
. 2007, (18):537-545
Virus-like particles (VLPs) are highly organised spheres that self-assemble from virus-derived structural antigens. These stable and versatile subviral particles possess excellent adjuvant properties capable of inducing innate and cognate immune responses. Commercialised VLP-based vaccines have been successful in protecting humans from hepatitis B virus (HBV) and human papillomavirus (HPV) infection and are currently explored for their potential to combat other infectious diseases and cancer. Much insight into VLP-mediated immune stimulation and optimised VLP design has been gained from human immunodeficiency virus (HIV)-derived VLPs presenting promising components of current AIDS vaccine approaches. Owing to their unique features, VLPs and virosomes, the in vitro -reconstituted VLP counterparts, have recently gained ground in the field of nanobiotechnology as organic templates for the development of new biomaterials.
... 由于VLP疫苗只含有病毒衣壳蛋白,不含核酸,不仅具有很高的安全性,而且便于规模化生产,是具有应用前景的新一代疫苗之一[27,28,29,30] ...
... 由于VLP疫苗只含有病毒衣壳蛋白,不含核酸,不仅具有很高的安全性,而且便于规模化生产,是具有应用前景的新一代疫苗之一[27,28,29,30] ...
... 由于VLP疫苗只含有病毒衣壳蛋白,不含核酸,不仅具有很高的安全性,而且便于规模化生产,是具有应用前景的新一代疫苗之一[27,28,29,30] ...
... 由于VLP疫苗只含有病毒衣壳蛋白,不含核酸,不仅具有很高的安全性,而且便于规模化生产,是具有应用前景的新一代疫苗之一[27,28,29,30] ...
利用 E.coli表达猪圆环病毒2型Cap蛋白生产病毒样颗粒疫苗
[赵晓云1,2, 乔绪稳1, 陈瑾1, 李鹏成1, 于晓明1, 朱国强2, 郑其升1, 侯继波1]

我要回帖

更多关于 目的基因与载体连接 的文章

 

随机推荐