放射性伽玛刀是什么是什么单位

放射线_百度百科
[fàng shè xiàn]
放射线(radioactive ray)不稳定元素衰变时,从中放射出来的有穿透性的,分、、,其中丙种射线贯穿力最强。另外,放射线对环境和人体有一定的危害。同一种元素之所以会放射出几种不同的射线,是因为原子核周围物质的多层分布。最外层物质受原子核的束缚力最小,最容易逃离,但是其自身的速度和能量也最小,穿透力也最小,波长较大,频率较低。中间层物质离原子核较近,需要较高的速度和能量才能逃离原子核的束缚,因此在放射时会有较高的速度和能量,穿透力也比较强,波长较小,频率较高。最里层物质最靠近原子核,围绕原子核旋转的速度也最快,逃离原子核时具有很高的速度和能量,有很强的穿透力,波长很短,频率很高。
放射线三种类型
为氦(,不是质子),带正电;
为,带负电;
为流,不带电。
放射线发现历史
发现了放,居里夫妇又作出了新的贡献。放射线本身究竟是什么呢?这正是当时科学界最关注的大问题。下面我们来讲一下另一位伟大的物理学家的工作。
1895年,就在发现的那一年,年轻的卢瑟福从新西兰远渡重洋来到英国,到有名的学习和工作。热情地欢迎了他。
一开始,他研究刚发现的X射线。当贝克勒耳发现放射线以后,在汤姆逊的建议下,卢瑟福立即转而研究放射线。
卢瑟福把铀装在里,罐上只留一个小孔,铀的射线只能由小孔放出来,成为一小束。他用纸张、云母、玻璃、铝箔以及 各种厚度的金属板去遮挡这束射线,结果
放射线测量表
发现铀的射线并不是由同一类物质组成的。其中有一类射线只要一张纸就能完全挡住,他把它叫做“软”射线;另一类射线则穿透性极强,几十厘米厚的 铝板也不能完全挡住,他把它叫做“硬”射线。
正在这时候,夫妇发现了镭,并且用磁场来研究镭的射 线。结果发现在磁场的作用下,射线分成两束。其中一束不被磁 场偏转,仍然沿直线进行,就像那样;另一束在磁场的作 用下弯曲了,就像一样。
用磁场研究射线,在里可是拿手好戏,实验 室主任汤姆逊在不久之前就是利用磁场、电场来研究阴极射线而 发现电子的。居里夫妇的研究情况传到了英国,立刻用更 强的磁场来研究铀(这时他手中还没有新发现的镭)的射线。
结果,铀的射线被分开了,不是两股,而是三股。新发现的 一股略有弯曲,卢瑟福把它叫做α(阿耳法)射线;那一股弯曲得 很厉害的叫做β(贝他)射线;不被磁场弯曲的那一股叫做γ(伽 玛)射线。
卢瑟福分别研究了三种射线的穿透本领。结果是:
的穿透本领最差,它在空气中最远只能走7厘米。一薄 片云母,一张0.05毫米的铝箔,一张普通的纸都能把它挡住。
的穿透本领比α射线强一些,能穿透几毫米厚的铝片。
的穿透本领极强,1.3厘米厚的铅板也只能使它的强 度减弱一半。
这三种射线是什么物质呢?
居里用汤姆逊研究的方法去测定了β射线,证明了β射线和阴极射线性质一样,是带阴电的,只不过速度更快 一些。
γ射线和类似,都是波长非常短的。
α射线是什么呢?一时还不清楚。
由于α射线和在磁场中弯曲的方向相反,显然带的电荷和β射线正相反,α射线应该是带阳电(正电)荷的。
用了几年时间专心研究α射线,最后才证明α射线是 失去两个电子的氦(氦离子)流。
众所周知,放射线、放射性物质是有害的。究竟对人体有哪些危害呢?
人体受到放射线的照射,随着射线作用剂量的增大,有可能随机地出现某些有害效应。例如它可能诱发、、等;也可能引起人体发生和,造成先天性畸形、流产、、不育等病症。不过,这种情况发生的几率很低,其
放射线检测试件品质
危险度一般没有超过目前人们可以接受的范围。
在事故情况下,如果人体所受射线的剂量达到一定程度,就可能出现一些明确的预期的有害效应。如人体眼晶体一次受到2以上的X或的照射,在3周以后就可能出现混浊,形成白内障;人体皮肤受到不同剂量的照射,可分别出现脱毛、红斑、水泡及溃疡坏死等损害;另外,还可能引起贫血、免疫功能降低、寿命缩短以及内分泌和生殖机能失调等。
当人体在短时间(数秒至数日)受到大于1戈瑞剂量的射线照射后,就会产生,危及生命;机体在较长时间内受到超的射线作用后可能导致,造成以造血组织损伤为主的全身慢性。这种情况主要针对从事射线工作的职业人员,很少在公众中发生,也不包括局部的。
当然,放射线也能为人类造福。医院使用射线常常用于人体某些疾病的诊断和治疗,可以起到独特的效果。同时,它也广泛地应用于工农业、科研及国防建设等领域。我们关键是要做到科学地使用,严格地加强防护,从而使人体免受其危害。
前面我们介绍的各种射线,既可以依靠天然放射线物质和从中获得,也可以通过各种粒子加速器制造出来。最后我们还要简单介绍一下另外一种能够用来产生射线的机器——反应堆。
放射线种类
天然一般强度比较低,而且难以根据需要任意调节,不能很好满足科技工作的需要。为此,人们探索能够产生强度大、能量高、性能好、容易调节和控制的射线源,
放射线检测钢板对接焊道
研制出各种。
我们知道,许多粒子如电子、、等等都是带电的,它们可在中被加速而获得很高的能量。这种能够使带电粒子在电磁场作用下加速并获得很高能量的机器就是粒子加速器。
粒子加速器有很多种。按粒子最终可获得的能量来分,有低能、中能和高能粒子加速器;按带电粒子所走的轨迹来分,有直线型、圆型和螺旋型;按加速器分类,则有利用直流高压电场加速的,利用高频电场加速的和利用磁场变化所产生的加速的等。按被加速的带电粒子种类来分,则有电子、质子、氘核和各种重元素离子加速器。它们各自都有适用于自己的
品种、能量范围以及性能特色。几十年来,它们在相互竞争中不断地发展、完善和更新,同时也在竞争和发展中相互补充。这种用人工方法制造的粒子源的很大的优越性,主要有以下一些:
(1)天然的射线源一般只能产生有限的几种射线,如中子、、、等,而粒子加速器所能产生的射线种类要多得多,例如可以产生出从氢到铀的所有元素的。
(2)由加速器产生的射线束的能量和强度可以根据需要任意选择和精确控制。
(3)加速器产生的流强度高、性能好。
(4)加速器可以根据需要随时运行和停机,停机以后就不再产生射线,便于管理和维修。
放射线核反应堆
除了加速器以外,反应堆也是人们制造出来的一种能够产生射线的机器。
自从1932 年恰德发现了中子以后,科学家们立即意识到他们已经掌握了一把打开原子核神秘宫殿大门的钥匙。因为不带电,比较容易打入原子核内部,引起。1938 年德国物理学家O.哈恩和F.斯特拉斯曼用中子轰击235U 时,发现235U 裂变为两片,实现了,同时释放出大量的能量。一个235U 核裂变的过程中,还会同时释放出2~3 个中子。这2~3 个中子又可以去轰击2~3 个235U 引起核裂变,同时又产生出更多的中子……,这样反复进行下去,可以在瞬间使许多235U 发生裂变,释放出惊人的能量和大量的中子和其它射线。这种反应就是所谓的。
核裂变的发现引起了很大的轰动,并很快将它推向应用。核裂变的应用朝着两个方向发展:一个是用于研制,这是利用不加控制的链式反应的原理制成的;另一个就是美国科学家研究出了控制连锁反应速度的办法,研制成世界上第一个反应堆。利用反应堆作为射线源的途径是多种多样的,既可以直接利用反应堆本身作为射线源,也可以间接地利用反应堆产生的各种放射性物质作为射线源。
放射线直接利用
直接利用反应堆作为射线源一般有两种办法:
(1)在反应堆中心(活性区)的水平方向或垂直方向开设一些引出射线的孔道,在孔道处直接利用反应堆内的射线。这样引出来的很高,但是射线种类复杂,能量分散。
(2)第二种方法是在第一种方法的基础上加屏蔽物对孔道引出的射线进行过滤。如果设法将掉,只让通过,这样就可以得到单一的γ射线。如果设法将γ射线屏蔽掉而只让通过,就可以得到单一的中子射线。
放射线间接利用
间接利用反应堆作为射线源也有两种办法:
(1)利用反应堆的中子与一些发生生成放射性同位素,然后再加工成同位素加以利用,例如我们常见的60Co(简称钴源)就是由59Co 稳定同位素在反应堆内经中子后生成的。
(2)在反应堆上建造一条辐照回路(俗称跑兔装置)。选择某些可以生成较短的的物质,让它可以在反应堆活性区与辐照室之间循环流动。当它停留在活性区时就转化为放射性同位素;停留在辐照室时,放射性同位素蜕变,发出大量。这样不断地反复循环流动,不断地被活化,又不断地放出γ射线,不断地为我们提供取之不尽的γ射线源。用这种办法得到的射线源比较单纯,而且利用射线是在室内进行的,不像在反应堆内那样受到很多限制。
放射线危害
对于放射线的危害,人们既熟悉又陌生。在常人的印象里,它是与威力无比的原子弹、氢弹的爆炸联系在一起的,随着全世界和平利用呼声的高涨,核武器的禁止使用,的大大减少,人们似乎已经远离。然而,近年来,随着及在工农业、医疗、科研等各个领域的广泛应用,放射线危害的可能性却在增大。
日,日本刺成县JCO公司的的加工厂发生了一起严重的核泄漏事故,有三名工人遭受严重,当救援人员把他们送到当地医院时,他们已经昏迷不醒。同时这次事故致使工厂周围临近地区遭受不同程度的污染,辐射量是正常值的一万倍,放射线的危害再一次向人类敲响警钟。
放射线同位素
什么是放射性同位素,它是怎样造成危害的呢?在周期表中,占据同一个位置,相同,但是不同的,称为同位素,铀有好几种同位素,比如说、、、铀234、铀236都属于铀的同位素。什么是放射性同位素?就是能够自发地放出射线的同位素,叫放射性同位素。
放射性同位素都能放出哪些射线呢?把装有放射性同位素的铅室打开,会立即从铅室中射出一束射线,加入磁场射线分成了三束,其中偏转角度较小的一束叫,另一束偏转角度较大的叫,中间一束叫。α射线穿透能力最弱,用一张厚纸就可以把它挡住;β射线穿透能力强一些,一定厚度的也可以把它挡住;γ射线有着极强的穿透力,通常用可以挡住。除这三种放射线外,常用的射线还有和中子射线,这些射线各具特定能量,对物质具有不同的穿透能力和间离能力,从而使物质或机体发生一些物理、化学、生化变化。如果人体受到长时间大剂量的射线照射,就会使组织受到损伤,破坏人体DNA分子结构,有时甚至会导致癌症,或者造成下一代遗传上的缺陷,受照射的人常常会出现头痛、四肢无力、贫血等多种症状,重者甚至死亡。  放射性同位素放出的射线是一种特殊的、既看不见也摸不着的物质,因此有人把它比喻为“魔线”。
放射线防护
使用源的一切实践活动,都必须遵从的三原则,也就是:一、实践正当化;第二、防护最优化;第三、个人剂量限制。
的基本方法有三条:第一、时间防护;第二、距离防护;第 三、屏蔽防护。值得注意的是,医生使用给病人诊治病症时,要根据病人的实际需要,权衡利弊,做到安全合理地使用射线装置。并耐心劝导那些主动要求但不需要使用射线装置诊治的病人,引导他们走出误区,并非一定要使用先进的医疗设备,才可以治疗百病。另外,随着人们对居室美化装修的升温,也在加剧。其原因之一就是某些建筑材料放出的污气作祟,但是只要我们的居室经常通风化气,污染就可以减少,兴利避害,让及射线装置造福人类。
放射线应用
工业上利用放射线穿透物质的本领,用来检测控制钢板或纸张的厚度,检查金属内部的砂眼及裂缝。农业上,通过放射线照射种子,是种子发生变异,培育出优良品种,使农业增产。在医疗卫生上,利用射线可以检查和治疗。第六章 伽马测井_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
第六章 伽马测井
上传于||暂无简介
大小:2.53MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢放射性勘探_百度百科
放射性勘探
本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
放射性勘探又称放射性测量或“伽玛法”。借助于地壳内天然放射性元素衰变放出的α、β、γ射线,穿过物质时,将产生游离、荧光等特殊的物理现象,人们根据放射性射线的物理性质利用专门仪器(如辐射仪、射气仪等),通过测量放射性元素的射线强度或射气浓度来寻找放射性矿床以及解决有关地质问题的一种物探方法。也是寻找与放射性元素共生的稀有元素、稀土元素以及多金属元素矿床的辅助手段。放射性物探方法有γ测量、辐射取样、γ测井、射气测量、径迹测量和物理分析等。
放射性勘探简介
地壳内放出的射线强度,以发现放射性元素矿床,探明矿体大小,确定放射性元素含量,并指导铀、钍矿和钾盐矿的开采。此法还用来寻找与放射性元素共生的其他非放射性矿床,如磷块岩矿、铝土矿、稀土和稀有元素矿床等;解决各类有关的问题,如地质填图,寻找同油气、地下水等有关的构造,以及对环境污染的监测等。放射性勘探的主要缺点是探测深度不大,必须与其他工作配合进行。
放射性勘探简史
1932年,加拿大的沃格特(W. Voget)首次采用装有盖革计数器的野外辐射仪。1949年,美国普林格尔(R.W.Pringle)和劳洛顿(K. I.Rouloton)试制成功了第一批闪烁式野外辐射仪,并在加拿大阿萨巴斯卡湖附近的铀矿区试验成功。
1944年航空放射性测量开始作实验性飞行。1949年美国、加拿大和英国开始设计航空闪烁辐射仪,1950年开始大量生产。1962年美国研制了高灵敏度的航空γ能谱仪,并从1966年开始用于矿产资源调查。60年代后期美国、英国、加拿大、日本等国开始采用汽车γ能谱测量。70年代测氡技术有了新的发展。中国于1954年开始进行放射性普查工作。
放射性勘探基本理论
自然界能产生放射性的核素已发现 230多种,其中80多种经过一次衰变就成为稳定的核素,称为单衰变。还有50多种原子序数高于80的放射性同位素,是由几个长寿元素衰变产生的。这些长寿元素经过一次衰变后,形成的产物仍然是放射性元素,再继续发生衰变,如此一代一代衰变下去,直到成为一个稳定的核素为止。通常把衰变起始的那个元素称为母元素,其衰变产物称为子元素。由母元素和子元素组成一个族,叫做放射性系列。已知有3个天然放射性系列,即铀系(或称铀-镭系)、钍系和锕系,它们的衰变如图1所示。还有一个用人工方法得到的镎系。每个天然放射系列中都有一个气态元素(An、Tn、Rn),是氡的同位素,通常称之为射气,都能逸散,其中以Rn的半衰期最长,故可扩散得较远。因此作放射性测量可以发现由放射性元素组成的矿床。
实验测定结果表明,不同的放射性衰变具有特定的能谱,称为射线能谱。各种天然放射性元素衰变时,放出的α 粒子能量为 4~10兆电子伏。一定的放射性元素所放出的α 粒子的能量是一定的。β射线的能量可自零到某一最大值(一般低于15兆电子伏)之间变化。γ射线有几种能量的γ光子。某种原子核发射出的各种能量的γ光子的集合,称为该核的γ能谱。各种天然放射性元素的γ射线能量一般为几十千电子伏到几兆电子伏。一定的放射性元素所放出的γ射线能量是一定的。故测定放射性能谱,特别是γ射线能谱,可以区分不同的放射性元素。例如40钾、铀系和钍系放射的 γ射线仪器谱上各在1.46、1.76、2.62兆电子伏处有一特征峰(图2),故分别测定1.3~1.6、1.6~2.2和2.2~2.9兆电子伏 3个能量间隔内γ射线的放射性强度,就可能区分放射性元素是属于40钾、铀系或钍系。  各种放射性元素都按指数规律衰变,即: Nt=N0e-λt,
式中N0为衰变起始时的原子数;Nt为经过t时间后保留的原子数;λ为衰变常数,和原子核的性质有关。不同的放射性元素λ值不同,但不随元素的化学或物理状态而改变。放射性元素衰变完一半所需的时间称为半衰期(T),T=0.693/λ。一种放射性元素经过10个半衰期,实际上可以认为衰变完了。表示衰变速度还可用原子平均寿命τ,τ =1/λ=1.44T。  如果从某一时刻起,放射性系列中各放射性元素的衰变率(单位时间内衰变的原子数)都相等,则这个状态叫做系列放射性平衡。这时,有以下关系: λ1N1 = λ2N2 =…= λiNi 。
利用上式,可由子元素原子数Ni推算母元素原子数N1。这就是根据γ能谱测量估算铀的含量的理论基础。
α、β及γ3种射线,以γ射线的穿透能力为最强。测定结果,γ射线的穿透能力比β射线大100倍,比α 射线大10000倍。在空中γ射线的射程可达200~300米,而β和α 射线分别仅达几米和几厘米。在岩石中,γ射线的射程约50~60厘米,β射线约0.5~0.6厘米,α 射线只有几十微米,一层灰尘就可把它全部挡住。因此,测定γ射线的强度是寻找放射性矿床的主要方法之一。
放射性勘探仪器
一般由探测器、放大器和记录装置等电子元器件组成。
放射性勘探探测器
当射线射入探测器后转换为电脉冲输出,经放大器放大后,送到甄别器把不需要的脉冲剔除,然后经过整形器变成大小相等、形状一致的脉冲送到脉冲计数器电路进行记录。由于核辐射粒子的性质,决定了人们不能直接对其进行观测,而只能通过它们与物质作用的某些物理、化学效应间接地进行观测。最常用的是利用电离作用和荧光作用制成的电离型探测器和闪烁计数器。
电离型探测器包括气体电离室、盖革计数器、正比计数器、半导体探测器等。其工作原理是,当射线通过电离室、计数器等内部的气体时,使气体分子电离产生电子和正离子,在外加电场的作用下,电子和正离子分别向阳极和阴极移动而形成一瞬时的电离电流,阳极电位相应下降,而形成一电压脉冲输出。半导体探测器与射线作用的电离效应与此相似,只不过发生在固体内,所产生的电子及空穴分别移向正、负极形成电流脉冲输出。测量这些电荷的电量或其形成的电离电流、电压脉冲,就可确定射线强度。
闪烁计数器是由闪烁体(荧光体)、光电倍增管和相应的电子线路组成。当射线穿入荧光体被吸收后,荧光体产生闪烁现象,放出光子。光子透过荧光体照射在光电倍增管的光阴极上,从光阴极上打出光电子,电子在管内得到倍增放大后被阴极收集,形成电脉冲输出,被电子仪器记录下来。入射线强,闪烁次数多,单位时间内的脉冲数就多;射线能量大,闪烁时光子多,脉冲幅度就大。从而就可以知道待测射线的强度和能量。常用的无机荧光体有NaI(T1)、ZnS(Ag)、CsI(T1)、LiI(T1)。有机荧光体蒽、三联苯、塑料闪烁体等多用于测量β射线的仪器中。由NaI(T1)晶体组成的仪器应用最广。
闪烁计数器与充气计数器相比,灵敏度较高,分辨能力强,不但可以测量射线强度,而且还能区分射线能量。因此,带闪烁计数器的辐射仪现在几乎全部取代了充气计数管型的辐射仪。
放射性勘探野外观测仪器
根据找矿方法的不同,野外观测所用的仪器有α射线测量仪及γ(β)辐射仪两类。
α 射线测量仪根据探测器的不同可分为几类:①用气体电离室作为探测元件的,如电离室型射气仪和各类验电器、静电计等;②以ZnS(Ag)组成的闪烁计数器为探测元件的,如闪烁室型射气仪和氡、钍分析仪等;③探测元件是金硅面垒型探测器的,如α 硅探测器、α 辐射探测仪、α 能谱等;④利用α 粒子对绝缘固体材料的辐射损伤留下的痕迹,经化学溶液蚀刻后能显示微米量级蚀坑的塑料径迹探测器。
γ(β)辐射仪是测量γ、β射线的,根据探测元件分为两种。一种是利用γ、β射线对氩、氖等一些惰性气体的电离作用,其探测元件为各类充气计数器,并由它组成各种盖革式辐射仪。还有用正比计数器(如 BF3计数器和3He计数器)组成的中子测量仪。另一种探测元件是闪烁计数器,由它组成了各式各样的地面、井下、航空闪烁辐射仪和室内外能谱测量仪。  测量方法  有γ测量、射气测量、α 径迹测量等几种。
放射性勘探γ测量
用盖革式辐射仪或闪烁辐射仪在地面步行作放射性总量测量,是铀矿普查工作中最有成效、最广泛采用的方法。它是以测量岩矿石的γ(或β+γ)射线总强度来发现放射性异常的。该法的优点是几乎能在任何地区、任何地质条件下进行最详细的测量。缺点是不能区分放射源的性质(铀、钍、钾),探测深度有限。
步行测量还可利用γ能谱仪在野外直接测定(点测)浮土及岩矿石中铀、钍、钾的等效含量。本法适用于各种地质、地形条件,即使在覆土掩盖区,只要存在放射性元素的分散晕就可采用。但效率较低,不适于大面积测量。
为了提高γ测量的效率,目前多将γ能谱仪装在飞机上或越野性能良好的汽车上进行测量,寻找放射性异常,也可以做成特殊的γ能谱仪,进行湖底或海底放射性测量。航空放射性测量,主要用于地质填图,推断铀、钍成矿区的位置,寻找与放射性元素分布有关的某些非放射性矿产资源(见)。车载放射性测量,主要用于踏勘性的调查,或作为航空放射性测量的初步检查。
γ测量还可以在钻孔中进行,即用辐射仪在钻孔中测量岩矿石的天然γ射线强度,以寻找地下深处放射性矿床。有γ测井(总量)和能谱测井两种(见)。
放射性勘探射气测量
利用射气仪测量土壤空气中放射性气体的浓度,以推断浮土覆盖下可能存在的放射性矿床,也可用来圈定破碎带等地质构造。射气测量主要是测量氡(部分钍)衰变时放出的α 射线。该法探测深度较大,一般可以发现 6~10米厚的浮土覆盖下的盲铀矿体。在岩石裂隙和构造破碎带有利于射气迁移的条件下,还可发现埋藏更深的矿体,因而广泛应用于浮土覆盖地区。可在现场用抽气泵自土壤中抽气取样,利用闪烁室型或电离室型射气仪直接进行测量;也可用活性炭吸附土壤空气中的氡,经过一定时间,在实验室测定活性炭中氡子体 RnC的β或γ放射性。土壤空气中的射气浓度受气候条件变化等许多因素的影响,使得射气异常的解释十分困难和复杂。
放射性勘探α 径迹测量
利用塑料径迹探测器记录地下放射性元素衰变时放出的α 粒子的径迹,以此寻找深部放射性矿床。探测器记录的α 径迹密度(径迹数平方毫米)主要取决于积累于埋在土壤中杯子里的氡及其子体放出的α 粒子。由于它是长时间(约20~30天)积累取样,即为时间上氡浓度的积分测量,因而比瞬时抽气取样的射气测量(为“时间上氡浓度的微分测量”)具有较大的探测深度,而且可在很大程度上消除气候和取样条件的变化影响,使所得结果比较可靠。此法操作简便,成本低,可发现来自深部的微弱信息。实际资料表明,找矿深度可达100~200米。其探深机制目前在理论上的解释尚不完善。缺点是埋片时间长,不能及时取得结果。
最近采用“钍过滤器”以消除钍的干扰。即在探杯口上盖一塑料薄膜,使钍射气通过它时已衰变掉,而氡减少甚微进入杯子。塑料探测器固定在探杯中。
放射性勘探α 硅探测器法
用硅半导体探测器记录地壳内放射性元素衰变时所放出的α 粒子。其找矿原理大致与α 径迹测量相似。探测器埋在土壤中,累计的α 粒子数也主要是氡及其子体放出的。但埋的时间较短,为数天或数小时,甚至更短。故能及时取得结果并进行现场评价。其探测深度原则上应与α 径迹测量差不多。因计数时间短,受气候变化的影响仍然较大。
近年来,还出现了人工热释光测量,α 卡、氡管法等多种射气测量技术,它们大都采用了累积测量原理,探测深度较大。放射性伽玛强度特征_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
您可以上传图片描述问题
联系电话:
请填写真实有效的信息,以便工作人员联系您,我们为您严格保密。
放射性伽玛强度特征
||暂无简介
易发表网提供各学科期刊论文下载、毕业论文...|
总评分0.0|
试读已结束,如果需要继续阅读或下载,敬请购买
你可能喜欢伽玛射线弹的简介_模型_中国百科网
伽玛射线弹的简介
    伽玛射线弹 -简介 伽玛射线弹伽玛射线弹:它爆炸后尽管各种效应不大,也不会使人立刻死去,但能造成放射性沾染,迫使敌人离开。所以它比氢弹、中子弹更高级,更有威慑力。伽马射线炸弹介于核武器和常规武器之间,威力巨大。这种炸弹的工作原理是令某些放射性元素在极短的时间内迅速衰变,从而释放出大量的伽马射线,但又不引起核裂变或是核聚变。它不会像核炸弹那样造成大量的放射性尘埃,但是所释放的伽马射线的杀伤力比常规炸弹高数千倍。如利用铪的衰变特性制造的炸弹,一克铪元素所包含的能量,相当于50公斤的TNT炸药,而且铪炸弹还不需要像核弹那样必须用足够多的质量来达到临界状态。因此,伽马射线炸弹技术能够开发质量和体积更小、威力更加巨大的弹头。 伽马射线-内部结构模型图
Copyright by ;All rights reserved.

我要回帖

更多关于 伽玛刀是什么 的文章

 

随机推荐