小学数学模型思想案例教学中如何渗透模型思想

小学数学中的建模思想_百度文库
您的浏览器Javascript被禁用,需开启后体验完整功能,
享专业文档下载特权
&赠共享文档下载特权
&10W篇文档免费专享
&每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
小学数学中的建模思想
总评分4.0|
用知识赚钱
&&小学数学中的建模思想
阅读已结束,下载本文需要
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,同时保存到云知识,更方便管理
加入VIP
还剩2页未读,
定制HR最喜欢的简历
你可能喜欢请在APP上操作
打开万方数据APP,点击右上角"扫一扫",扫描二维码即可将您登录的个人账号与机构账号绑定,绑定后您可在APP上享有机构权限,如需更换机构账号,可到个人中心解绑。
检索详情页
{"words":"$head_words:模型思想+$head_words:数学模型+$head_words:小学数学+$head_words:能力培养","themeword":"$head_words","params":"$title:如何在小学数学教学中渗透模型思想"}
&&&如何在小学数学教学中渗透模型思想
如何在小学数学教学中渗透模型思想
数学模型思想是一般化思想方法,数学模型的主要表现形式是数学符号表达式、图形和图表;数学模型思想是在解决生活中的实际问题过程中,提炼出来的数学思想、方法和知识.小学生模型思想相对薄弱,只能在课堂中有效渗透,才能增强学生数学观念和数学意识,提高学生的数学素养.在小学数学教学中培养学生数学模型思想是一个系统的、循序渐进的过程.
摘要: 数学模型思想是一般化思想方法,数学模型的主要表现形式是数学符号表达式、图形和图表;数学模型思想是在解决生活中的实际问题过程中,提炼出来的数学思想、方法和知识.小学生模型思想相对薄弱,只能在课堂中有效渗透,才能增强学生数学观念和数学意识,提高学生的数学素养.在小学数学教学中培养学生数学模型思想是一个系统的、循序渐进的过程.&&
相关论文(与本文研究主题相同或者相近的论文)
同项目论文(和本文同属于一个基金项目成果的论文)
您可以为文献添加知识标签,方便您在书案中进行分类、查找、关联
请输入添加的标签
万方数据知识服务平台--国家科技支撑计划资助项目(编号:2006BAH03B01)
&北京万方数据股份有限公司 万方数据电子出版社
实名学术社交
个性化订阅推荐
快速查看收藏过的文献您的位置:
小学数学思想方法的梳理
小学数学思想方法的梳理课程教材研究所 王永春&数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。 数学课程标准在总体目标中明确提出:“学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。”这一总体目标贯穿于小学和初中,这充分说明了数学思想方法的重要性。在小学数学阶段有意识地向学生渗透一些基本的数学思想方法可以加深学生对数学概念、公式、法则、定律的理解,提高学生解决问题的能力和思维能力,也是小学数学进行素质教育的真正内涵之所在。同时,也能为初中数学思想方法的学习打下较好的基础。在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一一对应思想、模型思想、数形结合思想、演绎推理思想、变换思想、统计与概率思想等等。为了使广大小学数学教师在教学中能很好地渗透这些数学思想方法,笔者把这些思想方法比较系统地进行概括和梳理,明晰这些思想方法的概念,整理它们在小学数学各个知识点中的应用,以及了解每个思想方法的适当拓展。一、符号化思想1. 符号化思想的概念。数学符号是数学的语言,数学世界是一个符号化的世界,数学作为人们进行表示、计算、推理和解决问题的工具,符号起到了非常重要的作用;因为数学有了符号,才使得数学具有简明、抽象、清晰、准确等特点,同时也促进了数学的普及和发展;国际通用的数学符号的使用,使数学成为国际化的语言。符号化思想是一般化的思想方法,具有普遍的意义。2. 如何理解符号化思想。数学课程标准比较重视培养学生的符号意识,并提出了几点要求。那么,在小学阶段,如何理解这一重要思想呢?下面结合案例做简要解析。第一,能从具体情境中抽象出数量关系和变化规律,并用符号表示。这是一个从具体到抽象、从特殊到一般的探索和归纳的过程。如通过几组具体的两个数相加,交换加数的位置和不变,归纳出加法交换律,并用符号表示:a+b=b+a。再如在长方形上拼摆单位面积的小正方形,探索并归纳出长方形的面积公式,并用符号表示:S=ab。这是一个符号化的过程,同时也是一个模型化的过程。第二,理解符号所代表的数量关系和变化规律。这是一个从一般到特殊、从理论到实践的过程。包括用关系式、表格和图象等表示情境中数量间的关系。如假设一个正方形的边长是a,那么4a就表示该正方形的周长,a2表示该正方形的面积。这同样是一个符号化的过程,同时也是一个解释和应用模型的过程。第三,会进行符号间的转换。数量间的关系一旦确定,便可以用数学符号表示出来,但数学符号不是唯一的,可以丰富多彩。如一辆汽车的行驶时速为定值80千米,那么该辆汽车行驶的路程和时间成正比,它们之间的数量关系既可以用表格的形式表示,也可以用公式s=80t表示,还可以用图象表示。即这些符号是可以相互转换的。第四,能选择适当的程序和方法解决用符号所表示的问题。这是指完成符号化后的下一步工作,就是进行数学的运算和推理。能够进行正确的运算和推理是非常重要的数学基本功,也是非常重要的数学能力。3. 符号化思想的具体应用。数学的发展虽然经历了几千年,但是数学符号的规范和统一却经历了比较慢长的过程。如我们现在通用的算术中的十进制计数符号数字0~9于公元8世纪在印度产生,经过了几百年才在全世界通用,从通用至今也不过几百年。代数在早期主要是以文字为主的演算,直到16、17世纪韦达、笛卡尔和莱布尼兹等数学家逐步引进和完善了代数的符号体系。符号在小学数学中的应用如下表。知识领域知识点应用举例应用拓展数与代数数的表示阿拉伯数字:0~9&&&中文数字:一~十&&&百分号:%千分号:‰&&用数轴表示数&&数的运算+、-、×、÷、(& ) ﹝﹞﹛﹜2(平方)3(立方)&&数的大小关系=、≈、&、&≥、≤、≠&运算定律加法交换律:a+b=b+a&&&加法结合律:a+b+c=a+(b+c)&&&乘法交换律:ab=ba&&&乘法结合律:(ab)c=a(bc)&&&乘法分配律:a(b+c)=ab+ac&&方程ax+b=c&&数量关系时间、速度和路程:s=vt&&&数量、单价和总价:a=np&&&正比例关系:y/x=k&&&反比例关系:xy=k&&&用表格表示数量间的关系&&&用图象表示数量间的关系&空间与图形用字母表示计量单位长度单位:km、m、dm、cm、mm&&&面积单位:km2、m2、dm2、cm2、mm2&&&质量单位:t、kg、g&&用符号表示图形用字母表示点:三角形ABC用符号表示角:∠1、∠2、∠3、∠4△ABC、线段AB、直线CD、直线L&&两线段平行:AB∥CD两线段垂直:AB⊥CD□ABCD&用字母表示公式三角形面积:S=ab&&&平行四边形面积:S=ah&&&梯形面积:S=&(a+b)h&&&&圆周长:C=2πr圆面积:S=πr?&&&长方体体积:v=abc正方体体积:v=a?圆柱体积:v=sh圆锥体积:v=sh&&统计与概率统计图和统计表用统计图表描述和分析各种信息&&可能性用分数表示可能性的大小&4.符号化思想的教学。符号化思想作为数学最基本的思想之一,数学课程标准把培养学生的符号意识作为必学的内容,并提出了具体要求,足以证明它的重要性。教师在日常教学中要给予足够的重视,并落实到课堂教学目标中。要创设合适的情境,引导学生在探索中归纳和理解数学模型,并进行解释和应用。学生只有理解和掌握了数学符号的内涵和思想,才有可能利用它们进行正确的运算、推理和解决问题。数学符号是人们在研究现实世界的数量关系和空间形式的过程中产生的,它来源于生活,但并不是生活中真实的物质存在,而是一种抽象概括。如数字1,它可以表示现实生活中任何数量是一个的物体的个数,是一种高度的抽象概括,具有一定的抽象性。一个数学符号一旦产生并被广泛应用,它就具有明确的含义,就能够进行精确的数学运算和推理证明,因而它具有精确性。数学能够帮助人们完成大量的运算和推理证明,但如果没有简捷的思想和符号的参与,它的工作量及难度也是很大的,让人望而生畏。一旦简捷的符号参与了运算和推理证明,数学的简捷性就体现出来了。如欧洲人12世纪以前基本上用罗马数字进行计数和运算,由于这种计数法不是十进制的,大数的四则运算非常复杂,严重阻碍了数学的发展和普及。直到12世纪印度数字及十进制计数法传入欧洲,才使得算术有了较快发展和普及。数学符号的发展也经历了从各自独立到逐步规范、统一和国际化的过程,最明显的就是早期的数字符号从各自独立的埃及数字、巴比伦数字、中国数字、印度数字和罗马数字到统一的阿拉伯数字。数学符号经历了从发明到应用再到统一的逐步完善的过程,并促进了数学的发展;反之,数学的发展也促进了符号的发展。因而,数学和符号是相互促进发展的,而且这种发展可能是一个慢长的过程。因而,符号意识的培养也应贯穿于数学学习的整个过程中,并需要一定的训练才能达到比较熟练的程度。二、化归思想1. 化归思想的概念。人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的意义和作用。2. 化归所遵循的原则。化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。因此,应用化归思想时要遵循以下几个基本原则:& (1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。数学来源于生活,应用于生活。学习数学的目的之一就是要利用数学知识解决生活中的各种问题,课程标准特别强调的目标之一就是培养实践能力。因此,数学化原则是一般化的普遍的原则之一。(2)熟悉化原则,即把陌生的问题转化为熟悉的问题。人们学习数学的过程,就是一个不断面对新知识的过程;解决疑难问题的过程,也是一个面对陌生问题的过程。从某种程度上说,这种转化过程对学生来说既是一个探索的过程,又是一个创新的过程;与课程标准提倡培养学生的探索能力和创新精神是一致的。因此,学会把陌生的问题转化为熟悉的问题,是一个比较重要的原则。(3)简单化原则,即把复杂的问题转化为简单的问题。对解决问题者而言,复杂的问题未必都不会解决,但解决的过程可能比较复杂。因此,把复杂的问题转化为简单的问题,寻求一些技巧和捷径,也不失为一种上策。(4)直观化原则,即把抽象的问题转化为具体的问题。数学的特点之一便是它具有抽象性。有些抽象的问题,直接分析解决难度较大,需要把它转化为具体的问题,或者借助直观手段,比较容易分析解决。因而,直观化是中小学生经常应用的方法,也是重要的原则之一。&&& 3. 化归思想的具体应用。学生面对的各种数学问题,可以简单地分为两类:一类是直接应用已有知识便可顺利解答的问题;另一种是陌生的知识、或者不能直接应用已有知识解答的问题,需要综合地应用已有知识或创造性地解决的问题。如知道一个长方形的长和宽,求它的面积,只要知道长方形面积公式的人,都可以计算出来,这是第一类问题;如果不知道平行四边形的面积公式,通过割补平移变换把平行四边形转化为长方形,推导出它的面积公式,再计算面积,这是第二类问题。对于广大中小学生来说,他们在学习数学的过程中所遇到的很多问题都可以归为第二类问题,并且要不断地把第二类问题转化为第一类问题。解决问题的过程,从某种意义上来说就是不断地转化求解的过程,因此,化归思想应用非常广泛。化归思想在小学数学中的应用如下表。知识领域知识点应用举例数与代数数的意义整数的意义:用实物操作和直观图帮助理解&&小数的意义:用直观图帮助理解&&分数的意义:用直观图帮助理解&&负数的意义:用数轴等直观图帮助理解&四则运算的意义乘法的意义:若干个相同加数相加的一种简便算法。&&除法的意义:乘法的逆运算。&四则运算的法则整数加减法:用实物操作和直观图帮助理解算法。&&小数加减法:小数点对齐,然后按照整数的方法进行计算。&&小数乘法:先按照整数乘法的方法进行计算,再点小数点。&&小数除法:把除数转化为整数,基本按照整数除法的方法进行计算,需要注意被除数小数点与商的小数点对齐。&&分数加减法:异分母分数加减法转化为同分母分数加减法。&&分数除法:转化为分数乘法。&四则运算各关系a + b = c, c -a = b,&& ab=c, a=c÷b&简便计算利用运算定律进行简便计算&方程解方程:解方程的过程,实际就是不断把方程转化为未知数前边的系数是1的过程(x=a)。&解决问题的策略化繁为简:植树问题、鸡兔同笼问题等。&&化抽象为直观:用线段图、图表、图像等直观表示数量之间的关系&&化实际问题为数学问题:化一般为特殊问题:化未知问题为已知问题:空间与图形三角形内角和通过操作把三个内角转化为平角&多边形的内角和转化为三角形求内角和&面积公式正方形的面积:转化为长方形求面积&&平行四边形面积:转化为长方形求面积&&梯形的面积和三角形的面积:转化为平行四边形求面积&&圆的面积:转化为长方形求面积&&组合图形的面积:转化为求基本图形的面积&体积公式正方体的体积和圆柱的体积:转化为长方体求体积&&圆锥体积:转化为圆柱求体积统计与概率统计图和统计表运用不同的统计图表描述各种数据&可能性运用不同的方式表示可能性的大小4.解决问题中的化归策略。(1)化抽象问题为直观问题。数学的特点之一是它具有很强的抽象性,这是每个想学好数学的人必须面对的问题。从小学到初中,再到高中,数学问题的抽象性不断加强,学生的抽象思维能力在不断接受挑战。如果能把比较抽象的问题转化为操作或直观的问题,那么不但使得问题容易解决,经过不断的抽象→直观→抽象的训练,学生的抽象思维能力也会逐步提高。下面举例说明。案例: ++++……=分析:此问题通过观察,可以发现一个规律:每一项都是它前一项的。但是对于小学和初中的学生来说,还没有学习等比数列求和公式。如果把一条线段看作1, 先取它的一半表示,再取余下的一半的一半表示,这样不断地取下去,最终相当于取了整条线段。因此,上式的结果等于1, 这样利用直观手段解决了高中生才能解决的问题。(2)化繁为简的策略。有些数学问题比较复杂,直接解答过程会比较繁琐,如果在结构和数量关系相似的情况下,从更加简单的问题入手,找到解决问题的方法或建立模型,并进行适当检验,如果能够证明这种方法或模型是正确的,那么该问题一般来说便得到解决。下面举例加以说明。案例1:把186拆分成两个自然数的和,怎样拆分才能使拆分后的两个自然数的乘积最大?187呢?分析:此题中的数比较大,如果用枚举法一个一个地猜测验证,比较繁琐。如果从比较小的数开始枚举,利用不完全归纳法,看看能否找到解决方法。如从10开始,10可以分成:1和9, 2和8, 3和7, 4和6, 5 和5。它们的积分别是:9,16, 21, 24, 25。可以初步认为拆分成相等的两个数的乘积最大,如果不确定,还可以再举一个例子,如12可以分成:1和11, 2和10, 3和9, 4和8, 5和7, 6和6, 它们的积分别是:11, 20, 27, 32, 35, 36。由此可以推断:把186拆分成93和93, 93和93的乘积最大,乘积为8649。适当地加以检验,如92和94的乘积为8648, 90和96的乘积为8640, 都比8649小。因为187是奇数,无法拆分成相等的两个数,只能拆分成相差1的两个数,这时它们的乘积最大。不再举例验证。案例2:你能快速口算85×85=,95×95=,105×105=吗?分析:仔细观察可以看出,此类题有些共同特点,每个算式中的两个因数相等,并且个位数都是5。如果不知道个位数是5的相等的两个数的乘积的规律,直接快速口算是有难度的。那么,此类题有什么技巧呢?不妨从简单的数开始探索,如15×15=225,25×25=625,35×35=1225。通过这几个算式的因数与相应的积的特点,可以初步发现规律是:个位数是5的相等的两个数的乘积分为左右两部分:左边为因数中5以外的数字乘比它大1的数,右边为25(5乘5的积)。所以85×85=7225,95×95=9025,105×105=11025,实际验证也是如此。很多学生面对一些数学问题,可能知道怎么解答,但是只要想起解答过程非常繁琐,就会产生退缩情绪,或者在繁琐的解答过程中出现失误,这是比较普遍的情况。因此,学会化繁为简的解题策略,对于提高解决繁难问题的能力大有帮助。(3)化实际问题为特殊的数学问题。数学来源于生活,应用于生活。与小学数学有关的生活中的实际问题,多数可以用常规的小学数学知识解决;但有些生活中的实际问题表面上看是一些常用的数量,似乎能用常规的数学模型解决问题。但真正深入分析数量关系时,可能由于条件不全面而无法建立模型。这时,就需要超越常规思维模式,从另外的角度进行分析,找到解决问题的方法。下面举例说明。案例1:某旅行团队翻越一座山。上午9时上山,每小时行3千米,到达山顶时休息1小时。下山时,每小时行4千米,下午4时到达山底。全程共行了20千米。上山和下山的路程各是多少千米?分析:由于只知道上山和下山的速度,不知道上山和下山的具体时间,因此无法直接求出上山和下山的路程,但是知道总路程。仔细观察可以发现:题中给出了两个未知数量的总和以及与这两个数量有关的一些特定的数量,如果用假设的方法,那么就类似于鸡兔同笼问题。假设都是上山,那么总路程是18(6×3)千米,比实际路程少算了2千米,所以下山时间是2﹝2÷(4-3)﹞小时,上山时间是4小时。上山和下山的路程分别是12千米和8千米。案例2:李阿姨买了2千克苹果和3千克香蕉用了11元,王阿姨买了同样价格的1千克苹果和2千克香蕉,用了6.5元。每千克苹果和香蕉各多少钱?分析:此题初看是关于单价、总价和数量的问题,但是,由于题中没有告诉苹果和香蕉各自的总价是多少,无法直接计算各自的单价。认真观察,可以发现:题中分两次给出了不同数量的苹果和香蕉的总价,虽然题中有苹果和香蕉各自的单价这两个未知数,但这二者没有直接的关系,如果用方程解决,也超出了一元一次方程的范围。那么这样的问题在小学的知识范围内如何解决呢?利用二元一次方程组加减消元的思想,可以解决这类问题;具体来说就是把两组数量中的一个数量化成相等的关系,再相减,得到一个一元一次方程。不必列式推导,直接分析便可:1千克苹果和2千克香蕉6.5元,那么可得出2千克苹果和4千克香蕉13元;题中已知2千克苹果和3千克香蕉11元。用13减去11得2,所以香蕉的单价是每千克2元。再通过计算得苹果的单价是每千克2.5元。(4)化未知问题为已知问题。对于学生而言,学习的过程是一个不断面对新知识的过程,有些新知识通过某些载体直接呈现,如面积和面积单位,通过一些物体或图形直接引入概念;而有些新知识可以利用已有知识通过探索,把新知识转化为旧知识进行学习。如平行四边形面积公式的学习,通过割补平移,把平行四边形转化为长方形求面积。这种化未知为已知的策略,在数学学习中非常常见。下面举例说明。案例:水果商店昨天销售的苹果比香蕉的2倍多30千克,这两种水果一共销售了180千克。销售香蕉多少千克?分析:学生在学习列方程解决问题时学习了最基本的有关两个数量的一种模型:已知两个数量的倍数关系以及这两个数量的和或差,求这两个数量分别是多少。题中的苹果和香蕉的关系,不是简单的倍数关系;而是在倍数的基础上增加了一个条件,即苹果比香蕉的2倍还多30千克。假如把180减去30得150,那么题目可以转化为:如果水果商店昨天销售的苹果是香蕉的2倍,那么这两种水果一共销售了150千克。销售香蕉多少千克?这时就可以列方程解决了,设未知数时要注意设谁为x,题目求的是哪个量。这个案例能给我们什么启示呢?教师在教学中要让学生学习什么?学生既要学习知识,又要学习方法。学生不仅要学会类型套类型的解题模式,更重要的是在理解和掌握最基本的数学模型的基础上,形成迁移类推或举一反三的能力。教师在上面最基本的模型基础上,可以引导学生深入思考以下几个问题:1. 水果商店昨天销售的苹果比香蕉的2倍少30千克,这两种水果一共销售了180千克。销售苹果多少千克?2. 水果商店昨天销售的香蕉比苹果的多30千克,这两种水果一共销售了180千克。销售苹果多少千克?3. 水果商店昨天销售的香蕉比苹果的少30千克,这两种水果一共销售了120千克。销售苹果多少千克?4. 水果商店昨天销售的苹果是香蕉的2倍,销售的梨是香蕉的3倍。这三种水果一共销售了180千克。销售香蕉多少千克?5. 水果商店昨天销售的苹果是香蕉的2倍,销售的梨是苹果的2倍。这三种水果一共销售了210千克。销售香蕉多少千克?从以上几个题目的步数来说,可能已经超越了教材基本的难度标准。但笔者近年来一直有一个理念:“高标准教学,标准化考试”教师们可以在课堂上大胆探索,这样的问题经过引导和启发,学生到底能否解决?学生是否能在数学思想方法和数学思维能力上得到更好的发展?是否贯彻了课程标准提倡的不同的人在数学上得到不同的发展的理念?(5)化一般问题为特殊问题。数学中的规律一般具有普遍性,但是对于小学生而言,普遍的规律往往比较抽象,较难理解和应用。如果举一些特殊的例子运用不完全归纳法加以猜测验证,也是可行的解决问题的策略。下面举例说明。案例:任意一个大于4的自然数,拆成两个自然数之和,怎样拆分才能使这两个自然数的乘积最大?分析:此问题如果运用一般的方法进行推理,可以设这个大于4的自然数为N。如果N为偶数,可设N=2K(K为任意大于2的自然数);那么N=K+K=(K-1)+(K+1)=(K-2)+(K+2)=…,因为K2&K2-1&K2-4&…,所以K×K&(K-1)×(K+1)&(K-2)×(K+2)&…,所以把这个偶数拆分成两个相等的数的和,它们的积最大。如果N为奇数,可设N=2K+1(K为任意大于1的自然数);那么N=K+(K+1)=(K-1)+(K+2)=(K-2)+(K+3)=…,因为K2+K&K2+K-2&K2+K-6&…,所以K×(K+1)&(K-1)×(K+2)&(K-2)×(K+3)&…,所以把这个奇数拆分成两个相差1的数的和,它们的积最大。仔细观察问题可以发现,题中的自然数只要大于4, 便存在一种普遍的规律;因此,取几个具体的特殊的数,也应该存在这样的规律。这时就可以把一般问题转化为特殊问题,仅举几个有代表性的比较小的数(只要大于4)进行枚举归纳,如10,11等,就可以解决问题,具体案例见前文。化归思想作为最重要的数学思想之一,在学习数学和解决数学问题的过程中无所不在,对于学生而言,要学会善于运用化归的思想方法解决各种复杂的问题,最终达到在数学的世界里举重若轻的境界。三、模型思想1. 模型思想的概念。数学模型是用数学语言概括地或近似地描述现实世界事物的特征、数量关系和空间形式的一种数学结构。从广义角度讲,数学的概念、定理、规律、法则、公式、性质、数量关系式、图表、程序等都是数学模型。数学的模型思想是一般化的思想方法,数学模型的主要表现形式是数学符号表达式和图表,因而它与符号化思想有很多相通之处,同样具有普遍的意义。不过,也有很多数学家对数学模型的理解似乎更注重数学的应用性,即把数学模型描述为特定的事物系统的数学关系结构。如通过数学在经济、物理、农业、生物、社会学等领域的应用,所构造的各种数学模型。为了把数学模型与数学知识或是符号思想明显地区分开来,本文主要从侠义的角度讨论数学模型,即重点分析小学数学的应用及数学模型的构建。2. 模型思想的重要意义。数学模型是运用数学的语言和工具,对现实世界的一些信息进行适当的简化,经过推理和运算,对相应的数据进行分析、预测、决策和控制,并且要经过实践的检验。如果检验的结果是正确的,便可以指导我们的实践。如上所述,数学模型在当今市场经济和信息化社会已经有比较广泛的应用;因而,模型思想在数学思想方法中有非常重要的地位,在数学教育领域也应该有它的一席之地。如果说符号化思想更注重数学抽象和符号表达,那么模型思想更注重数学的应用,即通过数学结构化解决问题,尤其是现实中的各种问题;当然,把现实情境数学结构化的过程也是一个抽象的过程。现行的数学课程标准对符号化思想有明确的要求,如要求学生“能从具体情境中抽象出数量关系和变化规律,并用符号来表示”这实际上就包含了模型思想。但是,课程标准对第一、二学段并没有明确提出模型思想的要求,只是在第三学段的内容标准和教学建议中明确提出了模型思想,要求在教学中“注重使学生经历从实际问题中建立数学模型”,教学过程以“问题情境—建立模型—解释、应用与拓展”的模式展开。如果说小学数学教育工作者中有人关注了模型思想,多数人基本上只是套用第三学段对模型思想的要求进行研究,也很难做到要求的具体化和课堂教学的贯彻落实。据了解,即将颁布的课程标准修改稿与现行的课程标准相比有了较大变化,在课程内容部分中明确提出了“初步形成模型思想”,并具体解释为“模型思想的建立是帮助学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识”。并在教材编写建议中提出了“教材应当根据课程内容,设计运用数学知识解决问题的活动。这样的活动应体现‘问题情境─建立模型─求解验证’的过程,这个过程要有利于理解和掌握相关的知识技能,感悟数学思想、积累活动经验;要有利于提高发现和提出问题的能力、分析和解决问题的能力,增强应用意识和创新意识”。这是否可以理解为:在小学阶段,从课程标准的角度正式提出了模型思想的基本理念和作用,并明确了模型思想的重要意义。这不仅表明了数学的应用价值,同时明确了建立模型是数学应用和解决问题的核心。3. 模型思想的具体应用。数学的发现和发展过程,也是一个应用的过程。从这个角度而言,伴随着数学知识的产生和发展,数学模型实际上也随后产生和发展了。如自然数系统1,2,3,…是描述离散数量的数学模型。2000多年前的古人用公式计算土地面积,用方程解决实际问题等,实际上都是用各种数学知识建立数学模型来解决问题的。就小学数学的应用来说,大多数是古老的初等数学的简单应用,也许在数学家的眼里,这根本就不是真正的数学模型;不过,小学数学的应用虽然简单,但仍然是现实生活和进一步学习所不可或缺的。小学数学中的模型如下表。知识领域知识点应用举例数与代数数的表示自然数列:0,1,2,…&&用数轴表示数&数的运算a+b=c;c-a =b, c-b=a;a×b=c(a≠0,b≠0);c÷a=b, c÷b=a&运算定律加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)&&乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc); &乘法分配律:a(b+c)=ab+ac&方程ax+b=c&数量关系时间、速度和路程:s=vt&&数量、单价和总价:a=np&&正比例关系:y/x=k;反比例关系:xy=k&&用表格表示数量间的关系&&用图象表示数量间的关系空间与图形用字母表示公式三角形面积:S=ab&&平行四边形面积:S=ah;梯形面积:S=&(a+b)h&&圆周长:C=2πr; 圆面积:S=πr2&&长方体体积:v=abc;正方体体积:v=a3;圆柱体积:v=sh圆锥体积:v=sh&&空间形式用图表表示空间和平面结构统计与概率统计图表用统计图表描述和分析各种信息&可能性用分数表示可能性的大小&4.模型思想的教学。从表格中可以看出:模型思想与符号化思想都是经过抽象后用符号和图表表达数量关系和空间形式,这是它们的共同之处;但是模型思想更加重视如何经过分析抽象建立模型,更加重视如何应用数学解决生活和科学研究中的各种问题。正是因为数学在各个领域的广泛应用,不但促进了科学和人类的进步,也使得人们对数学有了新的认识:数学不仅仅是数学家的乐园,它也不应是抽象和枯燥的代名词,它是全人类的朋友,也是广大中小学生的朋友。广大教师在教学中结合数学的应用和解决问题的教学,要注意贯彻课程标准的理念:一方面要注重渗透模型思想,另一方面要教会学生如何建立模型,并喜欢数学。学生学习数学模型大概有两种情况:第一种是基本模型的学习,即学习教材中以例题为代表的新知识,这个学习过程可能是一个探索的过程,也可能是一个接受学习的理解过程;第二种是利用基本模型去解决各种问题,即利用学习的基本知识解决教材中丰富多彩的习题以及各种课外问题。数学建模是一个比较复杂和富有挑战性的过程,这个过程大致有以下几个步骤:(1)理解问题的实际背景,明确要解决什么问题,属于什么模型系统。(2) 把复杂的情境经过分析和简化,确定必要的数据。(3) 建立模型,可以是数量关系式,也可以是图表形式。(4) 解答问题。下面结合案例做简要解析。第一,学习的过程可以经历类似于数学家建模的再创造过程。现实生活中已有的数学模型基本上是数学家和物理学家等科学家们把数学应用于各个科学领域经过艰辛的研究创造出来的,使得我们能够享受现有的成果。如阿基米德发现了杠杆定律:平衡的杠杆,物体到杠杆支点的距离之比,等于两个物体重量的反比,即F1:F2=L2:L1。根据课程标准的理念,学生的学习过程有时是一个探索的过程,也是一个再创造的过程;也就是说有些模型是可以由学生进行再创造的,可以把科学家发明的成果再创造一次。如在学习了反比例关系以后,可以利用简单的学具进行操作实验,探索杠杆定律。再如利用若干个相同的小正方体拼摆成一个长方体,探索长方体中含有小正方体的个数与长方体的长、宽、高的关系,进而归纳出长方体的体积公式,建立模型V=abc,这是一个模型化的过程,也是一个再创造的过程。第二,对于大多数人来说,在现实生活和工作中利用数学解决各种问题,基本上都是根据对现实情境的分析,利用已有的数学知识构建模型。这样的模型是已经存在并且是科学的,并不是新发明的,由学生进行再创造也几乎是不可行的;换句话说,有些模型由于难度较大或不便于探索,不必让学生再创造。如两个变量成反比例关系,如果给出两个量数据变化的表格,学生通过观察和计算有可能发现这两个量的关系。但是如果让学生动手实践操作去发现规律,还是有一定难度的。再如物体运动的路程、时间和速度的关系为s=vt,利用这个基本模型可以解决各种有关匀速运动的简单的实际问题。但是由于这个模型比较抽象,操作难度较大,因而也不适合学生进行再创造。教师只需要通过现实模拟或者动画模拟,使学生能够理解模型的意义便可。第三,应用已有的数学知识分析数量关系和空间形式,经过抽象建立模型,进而解决各种问题。学生学习了教材上的基础知识以后,利用已有知识解决新的更加复杂的各种问题,是一个富有挑战的过程,也可以是一个合作探究的过程。如小学生奥林匹克数学竞赛中有很多应用数学解决的问题,就是一个建立模型的过程;再如中学生和大学生组队参加数学建模大赛,就是一个团队合作探究的过程。案例1:小明的家距离学校600米,每天上学从家步行10分钟到学校。今天早晨出门2分钟后发现忘记带学具了,立即回家去取。他如果想按原来的时间赶到学校,他从回家再到学校,步行的速度应是多少?(取东西的时间忽略不计)解答过程如下:  (1) 本题是日常生活中常见的行程问题,问题是要求小明步行的速度,是关于时间、速度和路程的问题。(2) 这里需要明确所求的速度相对应的路程和时间是什么,因为取东西等时间忽略不计,因此剩余的时间就可以确定为步行的时间;路程是从家出来2分钟后开始算,再回家的路程加上从家到学校的路程的和;时间是10分钟减去2分钟,只有8分钟的时间了。(3) 根据基本的关系式s=vt,可先求出s=600+(600÷10)×2=720(米),t=10-2=8(分钟)。列式为:720=8v。(4)v=90,即小明步行的速度为90米/分钟。从上面的解答过程来看,小学数学的情境还是比较容易理解的,模型系统也容易确定。如果说此题比教材中的一般习题有难度的话,就是路程和时间没有直接给出,拐了个弯。也就是说难点在于第二步中知道模型系统后相应的数量怎么准确地找出来,一定要注意题中对每一个量是怎样叙述的,有什么特殊的要求,在认真读题的基础上准确地找出来或计算出来。案例2 :有一根20米长的绳子,要剪成2米和5米长两种规格的跳绳,每种跳绳各剪多少根?(要求绳子无剩余,并且每种规格的跳绳至少要有一根。)分析:此题从表面上看,是小学数学整数乘除法的一般问题,但是由于题目中有特殊要求,无法直接列式解答。如果用方程,题目中涉及了两个未知数,属于二元一次方程,超出了小学数学的范围。那么,面对这样的问题如何解决呢?在小学数学中面对一些非常规的问题时,有时运用列表枚举或者猜测的方式是一种可行的策略,只不过会繁琐一些。5米跳绳的根数1234&2米跳绳的根数7520&剩余米数1010&由上表可知符合要求的答案为:5米和2米的跳绳分别剪2根和5根。此题如果用方程解决,可设5米和2米的跳绳分别剪x根和y根,可列方程:5x+2y=20。可仿照正比例关系y=kx图像的画法,在有方格纸的坐标系里,通过两点(0,10)和(4,0)画出一条直线,就是方程5x+2y=20的图像。再找出图像与方格的交叉点重合的点,就是方程的解。案例3:一瓶矿泉水满瓶水为500毫升,小林喝了一些,剩余的水都在圆柱形的部分,高度是16厘米。如果把瓶盖拧紧,倒立过来,无水的部分高度是4厘米。小林喝了多少水?分析:此题是求水的容积,有一个在建模过程中需要的假设,就是矿泉水瓶圆柱部分并不是一个严格的圆柱形状,要假设它是圆柱形状,这样才便于建立模型。由于不知道圆柱的底面积,所以无法用容积公式直接求解。这就需要换一个思路来想,根据容积公式v=sh,可知如果底面积一定,容积与圆柱的高成正比。这样就把求容积问题转化为比例的问题。由于矿泉水瓶最上面部分形状不规则,倒立过来以后喝的水就相当于圆柱形瓶子高度为4厘米的水。满瓶矿泉水就相当于这瓶水都装在圆柱形瓶子后,高度为20厘米的水。可设小林喝的水为v毫升,列式为:v:500=4:(16+4),v=100。四、推理思想1. 推理思想的概念。推理是从一个或几个已有的判断得出另一个新判断的思维形式。推理所根据的判断叫前提,根据前提所得到的判断叫结论。推理分为两种形式:演绎推理和合情推理。演绎推理是根据一般性的真命题(或逻辑规则)推出特殊性命题的推理。演绎推理的特征是:当前提为真时,结论必然为真。演绎推理的常用形式有:三段论、选言推理、假言推理、关系推理等。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。合情推理的常用形式有:归纳推理和类比推理。当前提为真时,合情推理所得的结论可能为真也可能为假。(1) 演绎推理。三段论,有两个前提和一个结论的演绎推理,叫做三段论。三段论是演绎推理的一般模式,包括:大前提——已知的一般原理,小前提——所研究的特殊情况,结论——根据一般原理,对特殊情况做出的判断。例如:一切奇数都不能被2整除,(23+1)是奇数,所以(23+1)不能被2整除。选言推理,分为相容选言推理和不相容选言推理。这里只介绍不相容选言推理:大前提是个不相容的选言判断,小前提肯定其中的一个选言支,结论则否定其它选言支;小前提否定除其中一个以外的选言支,结论则肯定剩下的那个选言支。例如:一个三角形,要么是锐角三角形,要么是直角三角形,要么是钝角三角形。这个三角形不是锐角三角形和直角三角形,所以,它是个钝角三角形。假言推理, 假言推理的分类较为复杂,这里简单介绍一种充分条件假言推理:前提有一个充分条件假言判断,肯定前件就要肯定后件,否定后件就要否定前件。例如:如果一个数的末位是0,那么这个数能被5整除;这个数的末位是0,所以这个数能被5整除。这里的大前提是一个假言判断,所以这种推理尽管与三段论有相似的地方,但它不是三段论。关系推理,是前提中至少有一个是关系命题的推理。下面简单举例说明几种常用的关系推理:(1)对称性关系推理,如1米=100厘米,所以100厘米=1米;(2)反对称性关系推理,a大于b,所以b不大于a ;(3)传递性关系推理,a&b,b&c,所以a&c。关系推理在数学学习中应用比较普遍,如在一年级学习数的大小比较时,把一些数按从小到大或从大到小的顺序排列,实际上都用到了关系推理。&(2) 合情推理。归纳推理,是从特殊到一般的推理方法,即依据一类事物中部分对象的相同性质推出该类事物都具有这种性质的一般性结论的推理方法。归纳法分为完全归纳法和不完全归纳法。完全归纳法是根据某类事物中的每个事物或每个子类事物都具有某种性质,而推出该类事物具有这种性质的一般性结论的推理方法。完全归纳法考察了所有特殊对象,所得出的结论是可靠的。不完全归纳法是通过观察某类事物中部分对象发现某些相同的性质,推出该类事物具有这种性质的一般性结论的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一步证明结论的可靠性。数学归纳法是一种特殊的数学推理方法,从表面上看并没有考察所有对象,但是根据自然数的性质,相当于考察了所有对象,因而数学归纳法实际上属于完全归纳推理。类比推理,是从特殊到特殊的推理方法,即依据两类事物的相似性,用一类事物的性质去推测另一类事物也具有该性质的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一步证明结论的可靠性。2. 推理思想的重要意义。我国数学教育几十年来的主要优势或者说成果就是重视培养学生的运算能力、推理能力和空间想象能力。传统的数学大纲比较强调逻辑推理而忽视了合情推理;而现行的课程标准又矫枉过正,过于强调合情推理,在逻辑推理能力方面有所淡化。近年来课程改革的实践证明,二者不可偏废。就学好数学或者培养人的智力而言,逻辑推理和合情推理都是不可或缺的。据了解,课程标准修改稿在这方面有比较合理的处理,明确了推理的范围及作用“推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们在学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。……在解决问题的过程中,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性”。数学在当今市场经济和信息化社会有比较广泛的应用,人们在利用数学解决各种实际问题的过程中,虽然大量的计算和推理可以通过计算机来完成。但是就人的思维能力构成而言,推理能力仍然是至关重要的能力之一,因而培养推理能力仍然是数学教育的主要任务之一。3. 推理思想的具体应用。推理思想作为数学的一个重要的思想方法,无论在小学还是在中学都有着广泛的应用,尤其是合情推理作为数学发现的一种重要方法,在小学数学的探究学习和再创造学习中应用更为广泛。在小学数学中虽然没有初中类似于数学证明等严密规范的演绎推理,但是在很多结论的推导过程中间接地应用了演绎推理。如推导出平行四边形的面积公式之后,三角形的面积公式的推导过程是先把两个同样的三角形拼成一个平行四边形,再根据平行四边形的面积公式推出三角形的面积公式。这个过程实际上应用了演绎推理,如下:平行四边形的面积等于底乘高,两个同样的三角形的面积等于平行四边形的面积,所以两个同样的三角形的面积等于底乘高;因而一个三角形的面积就等于底乘高的积除以2。小学数学中推理思想的应用如下表。思想方法知识点应用举例不完全归纳法找规律找数列和图形的规律整数计算四则计算法则的总结运算定律加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)&乘法交换律:ab=ba乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac除法商不变的规律分数分数的基本性质面积长方形面积公式的推导体积长方体体积公式的推导;圆柱体积公式的推导;圆锥体积公式的推导完全归纳法三角形三角形内角和的推导类比推理整数读写法亿以内及亿以上的数的读写,与万以内数的读写相类比整数的运算四则计算的法则:多位数加减法与两位数加减法相类比,多位数乘多位数与多位数乘一位数相类比,除数是多位数的除法与除数是一位数的除法相类比小数的运算整数的运算法则、顺序和定律推广到小数分数的运算整数的运算顺序和运算定律推广到分数除法分数比除法商不变的规律、分数的基本性质和比的基本性质进行类比面积与平行四边形面积公式的推导方法相类比,三角形、梯形面积公式的推导,也用转化的方法,把它们转化成平行四边形推导面积公式。长度、面积、体积线、面、体之间的类比:线段有长短,用长度单位来计量;平面图形有大小,用面积单位来计量;立体图形占的空间有大小,用体积单位来计量问题解决数量关系相近的实际问题的类比,如分数实际问题与百分数实际问题类比鸡兔同笼不同素材的鸡兔同笼问题的类比抽屉原理不同素材的抽屉原理问题的类比三段论多边形多边形内角和的推导面积正方形面积公式的推导;平行四边形面积公式的推导;三角形面积公式的推导;梯形面积公式的推导;圆面积公式的推导体积正方体体积公式的推导选言推理&类似于人教版二年级上册数学广角中的“猜一猜”假言推理&根据概念、性质等进行判断的一些问题关系推理&大小比较、恒等变形、等量代换等等4.推理思想的教学。就演绎推理和合情推理的关系及教学建议,课程标准修改稿指出“推理贯穿于数学教学的始终,推理能力的形成和提高需要一个长期的、循序渐进的过程。义务教育阶段要注重学生思考的条理性,不要过分强调推理的形式。……教师在教学过程中,应该设计适当的学习活动,引导学生通过观察、尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些结论,发展合情推理能力;通过实例使学生逐步意识到,结论的正确性需要演绎推理的确认,可以根据学生的年龄特征提出不同程度的要求”。根据以上课程标准关于推理思想的理念和要求,在小学数学教学中要注意把握以下几点。第一,推理是重要的思想方法之一,是数学的基本思维方式,要贯穿于数学教学的始终。在小学数学中,除了运算是数学的基本方法外,推理也是常用的数学方法。无论是低年级的找规律、总结计算法则,还是高年级的面积、体积公式的推导,无不用到推理的思想方法。因而,广大教师要牢记推理思想从一年级就要开始渗透和应用,是一个长期的培养过程。第二,合情推理和演绎推理二者不可偏废。合情推理多用于根据特殊的事实去发现和总结一般性的结论,演绎推理往往用于根据已有的一般性的结论去证明和推导新的结论。二者在数学中的作用都是很重要的。第三,推理能力的培养与四大内容领域的教学要有机地结合。推理能力的发展与各领域知识的学习是一个有机的结合过程,因而在教学过程中要给学生提供各个领域的丰富的、有挑战性的观察、实验、猜想、验证等活动,去发现结论,培养推理能力。第四,把握好推理思想教学的层次性和差异性。推理能力的培养要结合具体知识的学习,同时要考虑学生的认知水平和接受能力。综合现行课程标准及其修改稿关于“数学思考”分阶段的目标要求,推理能力在小学阶段的要求可参考下表。学 段推理能力教学目标第一学段初步学会选择有用信息进行简单的归纳和类比第二学段在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果下面再结合案例谈谈几种在小学数学中应用较多的推理思想的教学。(1)类比思想。无论是学习新知识,还是利用已有知识解决新问题,如果能够把新知识和新问题与已有的相类似的知识进行类比,进而找到解决问题的方法,这样就实现了知识和方法的正迁移。因此,要引导学生在学习数学的过程中善于利用类比思想,提高解决问题的能力。有些类比比较直接,如由整数的运算定律迁移到小数、分数的运算定律,问题解决中数量关系相近的问题的类比等。而有些类比比较隐蔽,需要在分析的基础上才能实现。如抽屉原理,变式练习有很多,难度较大,解决此类问题的关键就是通过类比找到抽屉。应用类比的思想方法,关键在于发现两类事物相似的性质,因此,观察与联想是类比的基础。另外,中学数学与小学数学可以类比的知识有很多,如果打好小学数学的知识基础和掌握类比思想,对于初中数学的学习会有较大益处。如在代数中,与整数的运算顺序和运算定律相类比,可以导出有理数和整式的运算顺序和运算定律;与分数的基本性质相类比,可以导出分式也具有类似的性质,并且可以推出它和分数一样能够进行化简和运算。案例:计算并观察下面的算式,你能发现什么规律?1=121+3=4=221+3+5=9=321+3+5+7=……1+3+5+7+…+99=分析:此题是由从1开始的奇数组成的系列加法算式,每一组算式比前一组多一个后继的奇数。通过计算并观察每组算式的得数,1是一个奇数,等于1的平方;(1+3)是前2个奇数相加,等于2的平方;(1+3+5)是前3个奇数相加,等于3的平方;(1+3+5+7)是前4个奇数相加,通过与前面算式进行类比,猜想应该等于4的平方;(1+3+5+7)=16,42=16,猜想正确。那么最后的算式是前50个奇数相加,等于50的平方。因此,可以归纳出一般的规律:前n个奇数相加的和等于n的平方。(2)归纳思想。不完全归纳法在小学数学的教学中应用比较广泛。小学数学中很多运算法则、公式、定律等的推导,都是在例举几个特殊例子的基础上得出的。如根据40+56=56+40,28+37=37+28,120+80=80+120等几个有限的例子,得出加法交换律。数学课程标准特别强调培养学生探索图形和数的排列规律,探索规律的过程就是一个应用不完全归纳法的过程。案例:观察下面的一组算式,你能发现什么规律?14+41=55,& 34+43=77,&27+72=99,& 46+64=110,& 38+83=121分析:通过观察算式,能够发现这样一些规律:所有的算式都是两位数加两位数,每个算式的两个加数中的一个加数的个位和十位数互换,变成另一个加数。再进一步观察,所有算式的得数有两位数也有三位数,它们有什么共同的规律呢?把它们分别分解质因数发现,每个数都是11的倍数。这样就可以大胆猜想并归纳结论:两个互换个位数和十位数的两位数相加,结果是11的倍数。再举例验证:57+75=132=11×12,69+96=165=11×15,初步验证猜想是正确的。那么如何进行严密的数学证明呢?可设任意一个两位数是ab(a和b是1~9的自然数),那么ab+ba=(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),从而证明了结论的正确。(3)三段论。在人们的传统观念中,小学几何是实验几何,很难在演绎推理证明方面有所渗透。同时,在初中阶段,培养学生的演绎推理能力是重要的教学目标之一;然而对于部分初中学生而言,这部分知识又是学习中的难点。那么,在小学高年级,能否进行演绎推理思想的渗透,从而使刚升入初中的学生有演绎推理的初步经验呢?下面的案例也许能说明问题。案例:如下图,两条直线相交形成4个角,你能说明∠2=∠4吗?&分析:此题在初中要根据“同角的补角相等”来证明对顶角相等。那么,在小学阶段,如何根据已有知识进行简单的证明呢?我们已经知道平角等于180度,再根据等量代换等知识就可以证明。下面给出最简单的证明:因为∠1和∠2、∠1和∠4分别组成平角,所以∠1+∠2=180°、∠1+∠4=180°,根据加减法各部分间的关系,可得&&& ∠2=180°-∠1、∠4=180°-∠1,根据等量代换,可得∠2=∠4。再看右上图,在初中要证明三角形的一个外角等于与它不相邻的两个内角的和,在小学阶段同样可以类似地得到证明。五、方程和函数思想1.方程和函数思想的概念。方程和函数是初等数学代数领域的主要内容,也是解决实际问题的重要工具,它们都可以用来描述现实世界的各种数量关系,而且它们之间有着密切的联系,因此,本文将二者放在一起进行讨论。(1)方程思想。含有未知数的等式叫方程。判断一个式子是不是方程,只需要同时满足两个条件:一个是含有未知数,另一个是必须是等式。如有些小学老师经常有疑问的判断题:χ=0 和χ=1是不是方程?根据方程的定义,他们满足方程的条件,都是方程。方程按照未知数的个数和未知数的最高次数,可以分为一元一次方程、一元二次方程、二元一次方程、三元一次方程等等,这些都是初等数学代数领域中最基本的内容。方程思想的核心是将问题中的未知量用数字以外的数学符号(常用χ、y等字母)表示,根据相关数量之间的相等关系构建方程模型。方程思想体现了已知与未知的对立统一。(2)函数思想。设集合A、B是两个非空的数集,如果按照某种确定的对应关系?,如果对于集合A中的任意一个数χ,在集合B中都有唯一确定的数y和它对应,那么就称y是χ的函数,记作y=f(χ)。其中χ叫做自变量,χ的取值范围A叫做函数的定义域;y叫做函数或因变量,与χ相对应的y的值叫做函数值,y的取值范围B叫做值域。以上函数的定义是从初等数学的角度出发的,自变量只有一个,与之对应的函数值也是唯一的。这样的函数研究的是两个变量之间的对应关系,一个变量的取值发生了变化,另一个变量的取值也相应发生变化,中学里学习的正比例函数、一次函数、二次函数、幂函数、指数函数、对数函数和三角函数都是这类函数。实际上现实生活中还有很多情况是一个变量会随着几个变量的变化而相应地变化,这样的函数是多元函数。虽然在中小学里不学习多元函数,但实际上它是存在的,如圆柱的体积与底面半径r和圆柱的高的关系:V=πr2h。半径和高有一对取值,体积就会相应地有一个取值;也就是说,体积随着半径和高的变化而变化。函数思想的核心是事物的变量之间有一种依存关系,因变量随着自变量的变化而变化,通过对这种变化的探究找出变量之间的对应法则,从而构建函数模型。函数思想体现了运动变化的、普遍联系的观点。&2. 方程和函数的关系。(1)方程和函数的区别。从小学数学到中学数学,数与代数领域经历了从算术到方程再到函数的过程。算术研究具体的确定的常数以及它们之间的数量关系。方程研究确定的常数和未知的常数之间的数量关系。函数研究变量之间的数量关系。方程和函数虽然都是表示数量关系的,但是它们有本质的区别。如二元一次不定方程中的未知数往往是常量,而一次函数中的自变量和因变量一定是变量,因此二者有本质的不同。方程必须有未知数,未知数往往是常量,而且一定用等式的形式呈现,二者缺一不可,如2χ-4=6。而函数至少要有两个变量,两个变量依据一定的法则相对应,呈现的形式可以有解析式、图象法和列表法等,如集合A为大于等于1 、小于等于10的整数,集合B为小于等于20的正偶数。那么两个集合的数之间的对应关系可以用y=2χ表示,也可以用图象表示,还可以用如下的表格表示。χ12345678910y2468101214161820人们运用方程思想,一般关注的是通过设未知数如何找出数量之间的相等关系构建方程并求出方程的解,从而解决数学问题和实际问题。人们运用函数思想,一般更加关注变量之间的对应关系,通过构建函数模型并研究函数的一些性质来解决数学问题和实际问题。方程中的未知数往往是静态的,而函数中的变量则是动态的。方程已经有3000多年的历史,而函数概念的产生不过才300年。(2)方程和函数的联系。方程和函数虽然有本质的区别,但是它们同属代数领域,也有密切的联系。如二元一次不定方程aχ+by+c=0和一次函数y=kχ+b,如果方程的解在实数范围内,函数的定义域和值域都是实数。那么方程aχ+by+c=0经过变换可转化为 y=x-,它们在直角坐标系里画出来的图象都是一条直线。因此,可以说一个二元一次方程对应一个一次函数。如果使一次函数y=kχ+b中的函数值等于0,那么一次函数转化为kχ+b=0,这就是一元一次方程。因此,可以说求这个一元一次方程的解,实际上就是求使函数值为0的自变量的值,或者说求一次函数图象与χ轴交点的横坐标的值。一般地,就初等数学而言,如果令函数值为0,那么这个函数就可转化为含有一个未知数的方程;求方程的解,就是求使函数值为0的自变量的值,或者说求函数图象与χ轴交点的横坐标的值。3. 方程和函数思想的重要意义。16世纪以前,人们主要是应用算术和方程方法解决现实生活中的各种实际问题,方程与算术相比,由于未知数参与了等量关系式的构建,更加便于人们理解问题、分析数量关系并构建模型,因而方程在解决以常量为主的实际问题中发挥了重要作用。到了17世纪,随着社会的发展,传统的研究常量的算术和方程已经不能解决以探究两个变量之间的关系为主的经济、科技、军事等领域的重要问题,这时函数便产生了。函数为研究运动变化的数量之间的依存、对应关系和构建模型带来了方便,从而能够解决比较复杂的问题。概括地说,方程和函数思想是中小学数学,尤其是中学数学的重要内容之一。方程和函数在研究和构建现实世界的数量关系模型方面,发挥着重要的不可替代的作用。4. 方程和函数思想的具体应用。小学数学在学习方程之前的问题,都通过算术方法解决。在引入方程之后,小学数学中比较复杂的有关数量关系的问题,都可以通过方程解决,方程思想是小学数学的重要思想,其中一元一次方程是小学数学的必学内容。在小学数学里没有学习函数的概念,但是有函数思想的渗透,与正比例函数和反比例函数最接近的正比例关系和反比例关系是小学数学的必学内容。另外,在小学数学的一些知识中也会渗透函数思想,如数与数的一一对应体现了函数思想。方程和函数是小学数学与初中数学衔接的纽带。小学数学中方程和函数思想的应用如下表。思想方法知识点应用举例方程思想方程用一元一次方程解决整数和小数等各种问题分数、百分数和比例用一元一次方程解决分数、百分数和比例等各种问题等量代换二(三)元一次方程组思想的渗透鸡兔同笼用方程解决鸡兔同笼问题函数思想加法一个加数不变,和随着另一个加数的变化而变化,可表示为y=χ+b的形式,渗透一次函数的思想积的变化规律一个因数不变,积随着另一个因数的变化而变化,可表示为y=kχ,渗透正比例函数思想商的变化规律除数不变,商随着被除数的变化而变化,可表示为y=,渗透正比例函数思想;被除数不变,商随着除数的变化而变化,可表示为y=,渗透反比例函数思想&正比例关系正比例关系改写成y=kχ,就是正比例函数反比例关系反比例关系改写成y=,就是反比例函数&数列等差数列、等比数列、一般数列的每一项与序号之间的对应关系,都可以看作是特殊的函数关系。空间与图形长方形、正方形、平行四边形、三角形、梯形的面积公式,长方体、正方体、圆柱、圆锥的体积公式,圆的周长和面积公式等都渗透了函数的思想统计图表函数的列表法与统计表有相似之处4.方程和函数思想的教学。方程和函数都是义务教育阶段重要的数学思想方法,用方程和函数表示数量关系和变化规律,不仅能体现方程和函数思想的应用价值,也有助于学生形成模型思想。根据课程标准的理念,方程和函数思想的教学应关注以下几点。(1)方程中的字母χ、y等代表具体的未知的常数,即未知数,这是代数思想和方程思想的基础。(2)正比例关系和反比例关系等函数关系式中的字母χ、y等代表的是变化的量,即变量,而且这两个量是相关联的量,一个量变化,另一个量会随之变化,这是函数思想的基础。要让学生体会他们的区别。(3)结合具体情境,通过分析数量关系来理解等量关系,并用方程表示等量关系,再通过解方程解决问题,从而认识方程的作用。(4)结合简单情境,认识成正比例的量或反比例的量,通过分析数量关系和变化规律建立比例关系式,再通过解比例解决问题。(5) 能根据给出的有正比例关系的数据在方格纸上画图,并根据其中一个量的值估计另一个量的值。下面再结合案例谈谈方程和函数思想的教学。案例1:妈妈买了3千克香蕉和2千克苹果,一共花了16元。苹果的价格是香蕉的2倍多1元,苹果和香蕉的单价各是多少?分析:题目涉及的是商品的数量、单价和总价的关系,根据数量关系“”进行分析,题中出现了两种商品,总价也是两种商品的总价。所以等量关系应为“香蕉的单价×香蕉的数量+苹果的单价×苹果的数量=总价”。再根据这个等量关系找出题中已知的量,总价16元、香蕉的数量3千克和苹果的数量2千克。未知的是香蕉和苹果的单价,也就是题目中要求的量。设香蕉的单价是χ元/千克,苹果的单价是y元/千克。根据题意,可列出如下方程。3χ+2y=16,y=2χ+1。根据等量代换的原理,两个方程可合并成一个方程,3χ+2(2χ+1)=16。这是在小学数学中遇到含有有关系的两个未知数的方程时能够直接列出一个方程的依据。如和倍、差倍、鸡兔同笼等问题,用方程解决也是利用了这个原理。解方程,χ=2, y=5。案例2:小明家的果园供游人采摘桃,每千克10元。请写出销售桃的总价(总收入)y元与数量(千克数) χ之间的关系式。如果某天的销量是50千克,这天的总收入是多少?如果上个月的总收入是12000元,上个月的销量是多少?分析:此题涉及的也是商品的单价、数量和总价的关系,仍然要根据数量关系“单价×数量=总价”进行分析。根据题意,已知的量是单价,未知的量是总价和数量,题目已经告诉我们分别用y和χ表示。因为桃的单价一定,所以它的总价与数量成正比例,可列关系式:y=10χ。某天的销量是50千克,总收入是500元。上个月的总收入是12000元,销量是1200千克。案例2和案例1相比较,都有两个量分别用y和χ表示。案例1中的y和χ虽然是未知的量,但是它们实际上是具体的静止的常量,都有一个固定的值,通过解方程可以得到它们的值。案例2的两个量y和χ则是相关联的变化的量,χ的取值可以是一定范围内 (果园内桃子总质量的最大值以内) 的任何一个数,y随χ的变化而变化。只有y和χ中的一个量取一个具体的值时,另一个量才会相应地取一个具体的值。如案例2中的具体问题的解答。案例3:有一批捐赠的图书分给一个班的学生,如果每人分3本,则还缺15本;如果每人分2本,则剩余25本。这个班有多少学生?分析:根据题意,这批书的数量和学生人数都是定值,那么表示书的数量的式子应该相等。题目求的是学生的数量,可设为未知数,书的数量可由学生的数量表示。设这个班有χ名学生,那么书的数量可分别表示为3χ-15和2χ+25,因此,可列方程3χ-15=2χ+25。解方程,χ=40。案例4:无限循环小数0.777…和0.747474…如何化成分数?你能发现什么规律?分析:根据小数和分数的关系,有限小数化分数比较容易进行。由于无限循环小数具有位数无限的特点,不能直接用有限小数化分数的方法进行。根据循环小数的循环节不断重复出现的特点,循环节是几位数字,就把这个循环小数乘10的几次方;它的左起第一个循环节就变成了整数部分,而循环小数部分不会改变;二者的小数部分相同,二者的差为由循环节变成的整数部分。因此,可利用差倍问题的原理,列方程解决问题。如设χ=0.777…,那么10χ=7.777…,求它们的差,10χ-χ=7,解方程,x=,所以0.777…=。同理可得,100χ-χ=74,x=,所以0.747474…=。  无限循环小数化分数的规律是:把循环节组成的数作为分子,循环节有几位数字,分母就是由几个9组成的几位数。六、几何变换思想变换是数学中一个带有普遍性的概念,代数中有数与式的恒等变换、几何中有图形的变换。在初等几何中,图形变换是一种重要的思想方法,它以运动变化的观点来处理孤立静止的几何问题,往往在解决问题的过程中能够收到意想不到的效果。1. 初等几何变换的概念。初等几何变换是关于平面图形在同一个平面内的变换,在中小学教材中出现的相似变换、合同变换等都属于初等几何变换。合同变换实际上就是相似比为1的相似变换,是特殊的相似变换。合同变换也叫保距变换,分为平移、旋转和反射(轴对称)变换等。(1)平移变换。&&& 将平面上任一点P变换到P′,使得:(1) 射线PP′的方向一定;(2) 线段PP′的长度一定,则称这种变换为平移变换。也就是说一个图形与经过平移变换后的图形上的任意一对对应点的连线相互平行且相等。平移变换有以下一些性质:①把图形变为与之全等的图形,因而面积和周长不变。②在平移变换下两点之间的方向保持不变。如任意两点A和B,变换后的对应点为A′和B′,则有AB∥A′B′。③在平移变换下两点之间的距离保持不变。如任意两点A和B,变换后的对应点为A′和B′,则有AB=A′B′。在解初等几何问题时,常利用平移变换使分散的条件集中在一起,具有更紧凑的位置关系或变换成更简单的基本图形。(2)旋转变换。在同一平面内,使原点O变换到它自身,其他任何点X变换到X′,使得:(1)OX′=OX;(2)∠XOX′=θ(定角);则称这样的变换为旋转变换。O称为旋转中心,定角θ为旋转角。当θ&0时,为逆时针方向旋转;当θ&0时,为顺时针方向旋转。当θ等于平角时,旋转变换就是中心对称。通俗地说就是一个图形围绕一个定点在不变形的情况下转动一个角度的运动,就是旋转。在旋转变换下,图形的方位可能有变化。旋转变换有以下一些性质:①把图形变为与之全等的图形,因而面积和周长不变。②在旋转变换下,任意两点A和B,变换后的对应点为A′和B′,则有直线AB和直线A′B′所成的角等于θ。③在旋转变换下,任意两点A和B,变换后的对应点为A′和B′,则有AB=A′B′。在解决几何问题时,旋转的作用是使原有图形的性质得以保持,但通过改变其位置,组合成新的图形,便于计算和证明。(3)反射变换。在同一平面内,若存在一条定直线L,使对于平面上的任一点P及其对应点P′,其连线PP′的中垂线都是L,则称这种变换为反射变换,也就是常说的轴对称,定直线L称为对称轴,也叫反射轴。轴对称有如下性质:①把图形变为与之全等的图形,因而面积和周长不变。②在反射变换下,任意两点A和B,变换后的对应点为A′和B′,则有直线AB和直线A′B′所成的角的平分线为L。③两点之间的距离保持不变,任意两点A和B,变换后的对应点为A′和B′,则有AB=A′B′。如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。把一个图形沿某一条直线折叠,如果它能够与另一图形重合,那么就说这两个图形关于这条直线对称。轴对称变换和轴对称图形是两个不同的概念,前者是指图形之间的关系或折叠运动,后者是指一个图形。中小学数学中的很多图形都是轴对称图形,利用这些图形的轴对称性质,可以帮助我们解决一些计算和证明的几何问题。(4)相似变换。在同一平面内,图形中的任意两点A、B,变换后的对应点为A′、B′,也就是任一线段AB变换成A′B′,总有A′B′=K·AB(K&0,且为常数),则称为相似变换。通俗地说就是一个图形按照一定比例放大或缩小,图形的形状不变。其中的K称为相似比或相似系数,当K=1时,即为合同变换。相似变换有以下一些性质:①两个图形的周长的比等于相似比。②两个图形的面积的比等于相似比的平方。③两条直线的夹角保持不变。生活中的许多现象都渗透着相似变换的思想,如物体和图形在光线下的投影、照片和图片的放大或缩小、零件的图纸等等,因而利用相似变换可以解决生活中的一些几何问题。2. 几何变换思想的重要意义。课程改革以来,几何的教学已经由传统的注重图形的性质,周长、面积和体积等的计算、演绎推理能力转变为培养空间观念、计算能力、推理能力及观察、操作、实验能力并重的全面的、和谐的发展。其中推理不仅仅重视演绎推理,还特别强调合情推理。也就是说,新课程的理念在几何的育人功能方面注重空间观念、创新精神、探索能力、推理能力、计算能力、几何模型等全面、和谐的发展。而图形变换作为几何领域的重要内容和思想方法之一,在几何的育人功能方面发挥着非常重要的作用。图形变换来源于生活中物体的平移、旋转和轴对称的这些运动现象,因而了解图形的变换,有利于我们认识生活中丰富多彩的生活空间和形成初步的空间观念。利用图形变换设计美丽的图案,有利于感受、发现和创造生活的美,有利于认识图形之间的关系和发展空间观念。利用图形变换把静止的几何问题通过运动变换,找到更加简捷的解决问题的方法。3. 几何变换思想的具体应用。图形变换作为空间与图形领域的重要内容之一,在图形的性质的认识、面积公式的推导、面积的计算、图形的设计和欣赏、几何的推理证明等方面都有重要的应用。小学数学中几何变换思想的应用如下表。思想方法知识点应用举例轴对称画简单的轴对称图形认识轴对称图形,画出一个简单图形的轴对称图形平移变换认识平移,把简单图形平移判断生活中物体的运动哪些是平移现象画出一个简单图形沿水平方向、竖直方向平移后的图形旋转变换感知旋转现象判断生活中物体的运动哪些是旋转现象把简单图形旋转90°画出一个简单图形顺时针或逆时针旋转90°后的图形合同变换图形的性质、面积的计算平行四边形、三角形、梯形和圆的面积公式的推导等都渗透了几何变换思想图案的欣赏和设计判断一些图案是由一些基本图形经过什么变换得到的;利用平移、旋转和轴对称等变换,设计美丽的图案相似变换把简单图形放大或缩小画出长方形、正方形、三角形等简单的图形按照一定的比例放大或缩小后的图形4.几何变换思想的教学。(1)课程标准关于图形变换的教学要求。课程标准关于图形变换的内容和目标分为以下几个层次:学段内容和目标第一学段结合生活实例,感知平移、旋转和轴对称现象。在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形认识轴对称图形,在方格纸上画出简单图形的轴对称图形第二学段认识图形的平移和旋转,体会图形的相似确定轴对称图形的对称轴,在方格纸上画出一个图形的轴对称图形在方格纸上画出简单图形平移或旋转90°后的图形;在方格纸上画出简单图形按一定比例放大或缩小后的图形判断一些图案是由一些基本图形经过什么变换得到的,利用平移、旋转和轴对称等变换,设计图案(2)教学中需要注意的问题。图形变换在大纲时代的小学几何中只学习了轴对称,而且不是几何中的主要内容。课程标准与大纲相比,在第一、二学段的空间与图形领域的图形变换方面,新增加了平移、旋转和相似变换。这些内容虽然难度不大,但是对概念的准确性和教学要求比较难把握,给一些教师的备课和教学带来一定困惑。下面谈一谈如何把握相关的概念和教学要求。第一,对一些概念的准确把握。平移、旋转、轴对称变换与生活中物体的平移、旋转和轴对称现象不是一个概念。数学来源于生活,但不等于生活,是生活现象的抽象和概括。生活中的平移和旋转现象往往是物体的运动,如推拉窗、传送带、电梯、钟摆、旋转门等物体的运动,都可以称之为平移现象或旋转现象。而中小学中的几何变换都是指平面图形在同一个平面的变换,也就是说原图形和变换后的图形都是平面图形,而且都在同一个平面内。几何中的平移、旋转和轴对称变换来自于生活中物体的平移现象、旋转现象和轴对称现象,如果把生活中这些物体画成平面图形,并且在同一平面上运动,就可以说成是几何中的平移、旋转和轴对称变换了。一个变换是不是合同变换或相似变换,要依据概念进行判断。如课程标准要求小学阶段的平移限于水平方向和竖直方向,实际上平移也可以沿斜线方向平移,只要满足平移的两个条件。如高山索道、滑雪等都可以看成平移现象,画成平面图形就是平移变换。再如旋转,象旋转门、螺旋桨、水龙头等都可以看成旋转现象,但是要注意它的严密性:一是旋转中心必须固定,二是物体不能变形,三是旋转的角度可大可小,可以是1度,也可以是300度。这样的旋转运动画成平面图形在同一平面的运动才是旋转变换。另外,几何意义上的变换都是从图形的对应点及其连线的几何性质进行描述的,与图形的颜色等无关。案例1:一辆汽车在笔直平坦的道路上行驶,这辆汽车的运动是平移吗?如果这辆汽车急刹车,轮胎抱死在道路上滑行是平移吗?分析:严格来说,物体的平移应该保证物体不变形而且物体上的点在物体上的位置是固定的,轮胎在转动时汽车的运动就不是平移了,轮胎抱死滑行就是平移。因此,前者不是平移,后者是平移。案例2:一架直升飞机在按一定速度飞行时螺旋桨的转动是旋转吗?它停在陆地上时螺旋桨的转动是旋转吗?分析:直升飞机在按一定速度飞行时螺旋桨在转动,但是它的旋转中心一直在移动,没有固定,因此不能看成几何意义上的旋转,只能说它是生活中的旋转现象。当它停在陆地上时螺旋桨的转动就可以看成旋转了。案例3:下面的图形是轴对称图形吗?分析:一个图形沿一条直线折叠,直线两边的部分能够完全重合,这样的图形才是轴对称图形,而光有四周或轮廓重合是不够的。图(1)从三角形的顶点向底边作一条垂线,垂线两边的轮廓能够重合,但是小方格没有对应的重合的部分,因此,它不是轴对称图形。图(2)是轴对称图形。第二,注意图形变换与其它几何知识的联系。小学几何中的很多平面图形都是轴对称图形,如长方形、正方形、等腰三角形、等边三角形、等腰梯形、菱形、圆等。一方面要在学习轴对称时加强对这些图形的对称轴和轴对称的有关性质的认识;另一方面要在学习这些图形的概念和性质时进一步体会它们的轴对称特点。在推导平行四边形、三角形和梯形的面积公式时,包括在计算组合图形的面积时,都用到了变换思想。如三角形面积公式的推导,是把任意两个完全相同的三角形拼成一个平行四边形,再利用三角形和平行四边形的关系,求出三角形的面积公式。这实际上是把任意一个三角形旋转180度,再沿着一条边平移,就组合成了一个平行四边形。也就是说,把任意一个三角形经过旋转和平移变换,就变换成了平行四边形。梯形面积公式的推导也是利用了这个原理。我国古代数学家刘徽利用出入相补原理求三角形和梯形的面积,实际上也用到了旋转变换。案例4:小明家的院子里有一块长30米、宽20米的长方形菜地,地里有两条相互垂直而且宽都是1米的小路。这块地实际种菜的面积是多少?分析:此题对于小学生来说,并不是难题,可以有多种方法。这里可以应用平移原理,把小路向底边和右边平移。这时实际种菜的面积就转化为求长29米、宽19米的长方形的面积,用长乘宽就可求出面积。案例5: 如图所示,三个同心圆的最大的圆的两条直径相互垂直,最大的圆的半径是50px,求阴影部分的面积。分析:此题从表面上看,阴影部分比较分散,没有足够的数据计算每部分阴影的面积。根据两条直径相互垂直可以得出每个圆都被平均分成了4份,每一份旋转90度都可以与相邻的部分重合。因此,可以把最外圈阴影部分的四分之一大圆绕圆心顺时针旋转90度,把中间阴影部分的四分之一圆绕圆心逆时针旋转90度,使阴影经过旋转集中在右上角四分之一大圆里。阴影的面积为:×π×22=π(cm2)。以上解题思路告诉我们,在计算一个图形尤其是组合图形的面积时,利用变换原理可以使原有的图形得到新的组合图形,转化为易于计算面积的图形,从而简化计算的步骤。第三,对教学要求和解题方法的准确把握。如前所述,课程标准对图形变换的内容和教学要求有比较清晰的描述,尤其是要把握好两个学段的内容、教学要求和解题方法。  首先像直观判断题,例如,一个平面内有若干图形,要判断哪些图形经过平移可以互相重合,对于小学生来说很难用任何一对对应点的连线平行且相等来判断,只能通过直观感受判断,也就是说直观感受原图形在没有任何转动的情况下,通过水平、竖直或者沿斜线滑动能够与另一个图形重合,就是平移。同一平面内的任何两个图形,如果通过平移后能够重合,那么最多只需要通过两次水平或者竖直方向的平移就能够重合,借助方格纸可以帮助我们理解其中的道理。如在方格纸上原图形中的点A(2,3),经过平移后它的对应点为A′(8,10)。那么原图形可以通过先向右平移6格,再向上平移7格;或者先向上平移7格,再向右平移6格,得到平移后的图形。其次像作图题,例如,画出一个图形沿着一个方向平移几格后的图形,应让学生明确,一个图形沿着一个方向平移几格,那么这个图形上的任何一个点和线段都沿着相同的方向平移几格。可重点掌握以下几个步骤:找出图形的关键的几个点;明确平移的方向和距离;画出平移后关键点的对应点;按照原图形的顺序连结各个点。再如,画出一个图形旋转90度后的图形,应让学生明确,一个图形绕一个点沿一个方向旋转多少度,那么这个图形上的任何一个点和线段都围绕该点沿着相同的方向旋转相同的度数。可重点掌握以下几个步骤:确定旋转中心、旋转方向;找出图形的关键的几个点;画出旋转后关键点的对应点;按照原图形的顺序连结各个点。其中的难点是,图形的关键点与旋转中心的连线是斜线的时候如何旋转90度,可以先画能够确定旋转90度的线段,再根据原图形的形状特点来确定其他的关键点。另外,在学习利用平行线画平行四边形之前,还可以利用平移在方格纸上画平行四边形,在方格纸上先任意画出顶点在方格交叉点上的相邻两条边,再根据平移的原理画出相对的两条边。七、分类讨论思想1. 分类讨论思想的概念。人们面对比较复杂的问题,有时无法通过统一研究或者整体研究解决,需要把研究的对象按照一定的标准进行分类并逐类进行讨论,再把每一类的结论综合,使问题得到解决,这种解决问题的思想方法就是分类讨论的思想方法。其实质是把问题“分而治之、各个击破、综合归纳”。其分类规则和解题步骤是:(1)根据研究的需要确定同一分类标准;(2)恰当地对研究对象进行分类,分类后的所有子项之间既不能“交叉”也不能“从属”,而且所有子项的外延之和必须与被分类的对象的外延相等,通俗地说就是要做到“既不重复又不遗漏”;(3)逐类逐级进行讨论;(4)综合概括、归纳得出最后结论。分类讨论既是解决问题的一般的思想方法,适应于各种科学的研究;同时也是数学领域解决问题较常用的思想方法。2. 分类讨论思想的重要意义。课程标准在总目标中要求学生能够有条理地思考,这种有条理性的思考就是一种有顺序的、有层次的、全面的、有逻辑性的思考,分类讨论就是具有这些特性的思考方法。因此,分类讨论思想是培养学生有条理地思考和良好数学思维品质的一种重要而有效的方法。无论是解决纯数学问题,还是解决联系实际的问题,都要注意数学原理、公式和方法在一般条件下的适用性和特殊情况下的不适用性,注意分类讨论,从而做到全面地思考和解决问题。从知识的角度而言,把知识从宏观到微观不断地分类学习,既可以把握全局、又能够由表及里、细致入微,有利于形成比较系统的数学知识结构和构建良好的认知结构。分类讨论思想与集合思想也有比较密切的联系,知识的分类无时不渗透着集合的思想。另外,分类讨论思想还是概率与统计知识的重要基础。3. 分类讨论思想的具体应用。分类讨论思想在小学数学的学习中有很多应用,例如从宏观的方面而言,小学数学可以分为数与代数、空间与图形、统计与概率和实践与综合应用四大领域。从比较具体的知识来说,几大领域的知识又有很多分支,例如小学数学中负数成为必学的内容以后,小学数学数的认识范围实际上是在有理数范围内,有理数可以分为整数和分数,整数又可以分为正整数、零和负整数,整数根据它的整除性又可以分为偶数和奇数。正整数又可以分为1、素数和合数。小学数学中分类讨论思想的应用如下表。思想方法知识点应用举例分类讨论思想分类一年级上册物体的分类,渗透分类思想、集合思想数的认识数可以分为正数、0、负数有理数可以分为整数和分数(小数是特殊的分数)整数的性质整数可以分为奇数和偶数正整数可以分为1、素数和合数图形的认识平面图形中的多边形可以分为:三角形、四边形、五边形、六边形…三角形按角可以分为:锐角三角形、直角三角形、钝角三角形三角形按边可以分为;不等边三角形、等腰三角形,其中等腰三角形又可以分为等边三角形和腰与底边不相等的等腰三角形四边形按对边是否平行可以分为:平行四边形、梯形和两组对边都不平行的四边形统计数据的分类整理和描述排列组合分类讨论是小学生了解排列组合思想的基础概率排列组合是概率计算的基础植树问题先确定是几排,再确定每排的情况:两端不栽、一端栽、两端都栽抽屉原理构建抽屉实际上是应用分类标准,把所有元素进行分类4.分类讨论思想的教学。如前所述,分类讨论思想在小学数学中占有比较重要的地位,而且应用比较广泛。在教学中应注意以下几点。第一,在分类单元的教学中,注意渗透分类思想和集合思想,一方面是一般物体的分类,如柜台上的商品、文具等;另一方面要注意从数学的角度分类,如立体图形、平面图形、数的认识和运算等。同时注意渗透集合的思想,就是说当把某些属性相同的物体放在一起,作为一个整体,就可以看作一个集合。第二,在三大领域知识的教学中注意经常性地渗透分类思想和集合思想,如平面图形和立体图形的分类、数的分类。第三,注意从数学思维和解决问题的方法上渗透分类思想,如排列组合、概率的计算、抽屉原理等问题经常运用分类讨论思想解决。第四,在统计与概率知识的教学中,渗透分类的思想。现实生活中的数据丰富多彩,很多时候需要把收集到的数据进行分类整理和描述,从而有利于分析数据和综合地做出推断。第五,注意让学生体会分类的目的和作用,不要为了分类而分类。如对商品和物品的分类是为了便于管理和选购,对数学知识和方法进行分类,是为了更深入地研究问题、理解知识、优化解决问题的方法。第六,注意有关数学规律在一般条件下的适用性和特殊条件下的不适用性。也就是说,有些数学规律在一般情况下成立,在特殊情况下不一定成立;而这种特殊性在小学数学里往往被忽略,长此以往,容易造成学生思维的片面性。如在小学里经常有争议的判断题:如果5a=2b,那么a:b=2:5;有人认为是对的,有人认为是错的。严格来说,这道题是错的,因为这里并没有规定a和b不等于0。之所以产生分歧,是因为在小学数学里有一个不成文的约定:在讨论整数的性质时,一般情况下不包括0。这种约定是为了避免麻烦,有一定道理;但是这样就造成了在解决有关问题时产生分歧,而且不利于培养学生思维的严密性,尤其是学生进入初中后的学习中,经常会因为解决问题不全面、忽略特殊情况而出现低级错误。&&& 案例1:下图中共有多少个长方形?  &&&&&&&&&&分析:此题可分类计数,分以下几步:单一的长方形:3×3=9;由两个单一长方形组成的长方形:横数2×3=6,竖数2×3=6,6+6=12;由三个单一长方形组成的长方形:横数1×3=3,竖数1×3=3,3+3=6;由四个单一长方形组成的长方形:4;由六个单一长方形组成的长方形:4;由九个单一长方形组成的长方形:1。共计 9+12+6+4+4+1=36(个)。案例2:任意给出4个两两不等的整数,请说明:其中必有两个数的差是3的倍数。分析:任意一个整数除以3,余数只有三种可能:0,1和2。运用分类思想,构造这样的三个抽屉:除以3余数分别是0,1和2的整数。根据抽屉原理,必有一个抽屉里至少放了两个数,这两个数除以3的余数相等,设这两个数分别为3m+r和3n+r(m、n都是整数),它们的差是3(m-n),必是3的倍数。八、统计思想1. 统计思想的概念。现实生活中有大量的数据需要分析和研究,如人口数量、物价指数、商品合格率、种子发芽率等等。有时需要对所有的数据进行全面调查,如我国为了掌握人口的真实情况,曾经进行过全国人口普查。一般情况下不可能也不需要考察所有对象,如物价指数、商品合格率等,就需要采取抽样调查的方法收集和分析数据,用样本来估计总体,从而进行合理的推断和决策,这就是统计的思想方法。在统计里主要有两种估计方法:一是用样本的频率分布估计总体的分布,二是用样本的数据特征(如平均数、中位数和众数)估计总体的数据特征。2. 统计思想的重要意义。在课程标准实施前的小学数学中,统计图表的知识也是必学的内容,但受那个时代人们观念的局限,对统计的认识和教学主要限于统计知识和技能本身,并没有把统计与信息时代和市场经济社会很好地联系起来。当今社会,人们每天的日常工作和生活都会面对纷繁复杂的信息和数据,如何收集、整理和分析数据,学会运用数据说话,做出科学的推断和决策,是每一个公民必须具备的数学素养和思维方式。因此,使学生在义务教育阶段熟悉统计的思想方法,逐步形成统计观念,有助于运用随机的观点理解世界,形成科学的世界观和方法论。3. 统计思想的具体应用。在小学数学中,统计思想的应用大体上可分为两种:一是统计作为四大领域知识中的一类知识,安排了很多独立的单元进行统计知识的教学;二是在学习了一些统计知识后,在其他领域知识的学习中,都不同程度地应用了统计知识,作为知识呈现的载体和解决问题的方法进行教学。因而,统计思想在小学数学中的应用是比较广泛的。小学数学中统计的知识点主要有:象形统计图、单式统计表、复式统计表、单式条形统计图、复式条形统计图、单式折线统计图、复式折线统计图、扇形统计图、平均数、中位数、众数,以及不恰当的数据及统计图表可能产生误导。这些知识作为学习统计的基础是必须掌握的,但更重要的是能够根据数据的特点和解决问题的需要选择合适的统计图表或者统计量来描述和分析数据、做出合理的预测和决策。4.统计思想的教学。课程标准的颁布和实施,赋予了统计更加丰富的内涵。教师要全面理解课程标准关于统计知识的内容和理念,在教学中要注意以下几点。第一,注重过程性目标的教学。让学生经历数据的收集、整理、描述、分析、推断和决策的过程。包括设计合适的调查表、选择合适的统计图表和统计量描述数据、科学地分析数据并做出合理的决策。统计的教学要改变以往注重统计知识和技能这种数学化的倾向,要让学生经历统计的全过程,把统计与生活密切联系起来,让学生学习活生生的统计,而不

我要回帖

更多关于 小学数学德育渗透案例 的文章

 

随机推荐