纠缠动态粒子背景通过什么联系

扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
量子纠缠,如果得知两个粒子是一对儿呢?且不论两个粒子为什么会发生相互作用,我就很纳闷,为何会知道那两个粒子它就是一对儿呢?又是如何观测到的呢?
作业帮用户
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
也可以是三个粒子纠缠,比如GHZ态和W态,也可以是多体纠缠
为您推荐:
其他类似问题
扫描下载二维码15:58 | Tags 标签:, , ,
13.从纠缠态到Qubit
使用我们在第8节中表述纠缠态时所用的简单数学,描述一下三粒子纠缠时的状态。
现在,我们有三个粒子\(A\)、\(B\)和\(C\),它们分别都有两种定态0、1(\(A_1\) 、\(A_0\) 、\(B_1\) 、\(B_0\)和\(C_1 C_0\))。因此,它们的单粒子定态可以组成8种三粒子定态:
|111&、|110&、|101&、|100&、|011&、|010&、|001&、|000&。 (12.1)
这儿使用了狄拉克符号来表示三粒子的状态。狄拉克符号其实很简单,只不过是给原来代表状态的字母或数字两边,加上了一件由左右两个符号:∣>,制成的外套而已。套上了这件外套,所表示的状态看起来,要比接连写一串数字或字母,意义清楚明了多了,并且还多了一层‘量子’的意思。比如说,我们用∣111>来表示三个粒子\(A\)、\(B\)和\(C\)都是1的那种量子状态。这儿的0和1,对电子来说,对应于不同的自旋;对光子来说,则对应于不同的偏振方向。其实,狄拉克创造的外套符号有两种。除了我们在(12.1)中用过的右矢∣>(英文名ket)之外,还有一个左矢<∣(英文名bra),我们以后也将会碰到。
读者可能还会发现,(12.1)中所列出的8种状态,与计算机数学中使用的二进制中,3个比特所能表达的所有2进制数值非常相像。不错,这正是我们本节的后半部分要介绍的qubit。在这儿,狄拉克ket外套∣>起到了作用,使它们看起来才有别于经典计算机科学中所说的bit!
和以前介绍过的双粒子纠缠态类似,从(12.1)中列出的的8种三粒子定态,我们可以组成无数多种纠缠态。其中格林伯格等人感兴趣的,是后来被人们称作GHZ态的那一种量子态。GHZ态可以写成如下表达式:
|GHZ& = |111& + |000& (12.2)
按照前面几节的惯例,我们在公式(12.2)中,略去了归一化系数\(\sqrt2\)-1。以后也都照此办理。
这个GHZ纠缠态是什么意思呢?类似于对双粒子纠缠态的解释,我们可以这样说:这个态是两个三粒子本征量子定态|111&和|000&的叠加态。再来复习复习前面几节中介绍过的所谓‘叠加’的意思:当我们描述电子干涉双缝实验时,‘叠加’意味着电子同时通过两条缝,既穿过缝1,又穿过缝2。所以,这儿|111&和|000&的‘叠加’ 就应该意味着,这个三粒子体系既是|111&,又是|000&,或言之:同时是定态|111&和定态|000&。如果使用哥本哈根派波函数塌缩的诠释说法:在测量之前,三个粒子是什么状态我们完全不能准确地说清楚。但是,只要我们一旦测量其中一个粒子,比如说,我们如果在\(z\)方向测量粒子A的自旋,其结果是|1&,那么,另外两个粒子\(z\)方向的自旋状态也立即分别塌缩为|1&;如果我们测量其中一个粒子(\(A\))在\(z\)方向的自旋,结果是|0&,那么,另外两个粒子\(z\)方向的自旋状态也立即塌缩为|0&。在上述说法中,如果被测量的不是粒子\(A\),而是\(B\)或\(C\),另外两个粒子也将遵循类似的塌缩过程。
使用更严格的数学,可以证明:GHZ纠缠态是三粒子量子态中纠缠度最大的态。我们在这儿谈到了纠缠度的大小,却尚未对纠缠度下定义。说实话,对纠缠度至今还没有一个公认的明确定义。一般可以用量子统计中使用的冯·诺伊曼‘熵’来定义纠缠度,但这就越扯越远,越扯越专业化了,就此打住。
除了GHZ纠缠态之外,在量子信息中又有人研究一种三粒子纠缠态中的W-态:
|W& = |100& + |010& + |001& (12.3)
下图用一个很直观的图像描述,来表示GHZ纠缠态和W-纠缠态的区别:
【三粒子纠缠态和Knot理论】
GHZ态和W-态分别对应于knot theory中的Borromean ring和Hopf ring。从上图中很容易看出两种结构的区别。如果我们断开图中左边Borromean ring三个圆环中的任何一个,其余两个圆环也立即分开了,这点性质可以对应于刚才我们所描述的GHZ态的量子力学特征:如果一旦测量三粒子系统中的任何一个粒子,其余两个粒子也立即分别塌缩为它们各自的单粒子定态。但是,如果我们考察图中右边的Hopf ring就会发现,当剪开三个圆环中的任何一个时,另外两个圆环并未被分开,仍然纠缠在一起。这种knot的性质也有它的量子力学对应:从W-态的表达式(12.2)中看出。当测量其中一个粒子而结果为|0&的时候,另外两个粒子塌缩到不能分离的双粒子纠缠态:|10& + |01&。
GHZ态和W-态是两类完全不同的纠缠态,不能互相转换。对三粒子系统的GHZ态和W-态可以很容易地推广到n粒子系统。用量子计算的语言来说,表达式(12.2)和(12.3)可以很容易地从3-qubit(3位量子元)系统,推广到n-qubit(n位量子元)系统。
现在,我们解释一下,什么叫qubit(或称q-比特)?类似于比特,它所表示的是量子计算机技术中的一个存储单位。随着计算机和网络走进社会,走进人们的日常生活,有关‘比特’,‘二进制’等概念几乎已经家喻户晓。而现在在本文中,我们在‘比特’这个词前面,加上了一个q,本文讨论的又是量子(quantum)问题,qubit的意义便显而易见了,那不就是一个‘量子比特’吗?
然而,重要的是,一个‘量子比特’和一个‘比特’,本质上有些什么相同及不同之处呢?很幸运,我们在前面表示三粒子纠缠时,用的是0和1,这和计算机中表示‘比特’和‘二进制’的符号是完全一致的,这是量子比特和比特的共同点,至于它们的不同之处,可以从物理和算法两种角度来理解。
我们首先从物理的角度来看‘比特’:在经典计算机的电子线路中,一般是经由介质中某点电压的‘高’和‘低’两种不同的物理状态来表示数学中的‘0’和‘1’。比如说,我们可以将大于0.5伏特的电压状态,规定为‘1’,小于0.5伏特的电压状态,规定为‘0’。这样,在一个确定的时刻,某点的电压或者是‘高’,或者是‘低’,也就是说,一个寄存器的输出,要么是‘1’,要么是‘0’,两种状态中只能取其中之一。这是由经典物理的决定性所决定的。这个或0或1的电压输出,就可以用来表示一个‘比特‘。
看到这儿,读者们已经预料到了,既然用经典的电压高低状态来表示比特,那么,本文中讨论了半天的量子态,就可以用来在物理上实现一个‘量子比特’。比如说,电子的自旋有‘上’‘下’之分,光子的园偏振方向有‘左’‘右’之别,这些量子力学中的物理量都可以用来对应于1和0两个数字,构成‘量子比特’。
谈到量子比特的特别之处,又回到了我们贯穿此文的,唠唠叨叨不断说到的一个量子现象的基本特点:那种“既是此,又是彼”的叠加态。也就是说,量子力学中的物理量都是分立的、不连续的、几率的。不存在那种类似经典力学中的‘在确定的时刻,确定的输出电压’的概念。所以,一个‘量子比特’在一个确定时刻的数值,是非决定性的。既是‘上’,又是‘下’,同时是‘0’又是‘1’。
‘量子比特’和‘比特’在算法意义上的不同,也是基于用以表达它们的物理状态的不同。我们知道,一个经典的比特有0和1两种状态,可以用它来表示0,或者表示1,但只是表示0、1中的其中一个。而一个量子比特同时有0和1两种状态,因此,就可以用它来表示0,也表示1,同时代表两个数。‘一个数’和‘两个数’,差别不大,但如果是3个比特(或3个量子比特)放在一起,就有些差别了。三个经典比特有了8个不同的状态,但仍然只能表示0-7之间的一个数。如果是三个量子比特组成的系统,就不一样了。那种情形下,可以同时存在8种不同的状态,因此,它可以用来同时代表0-7这8个数。
现在,假设我们有了一个3-qubit系统构成的计算器,我们可以进行计算了。比如说,将它乘以5。当我们输入5,并发出运算指令后,这个3-qubit系统中0-7的所有8个数都开始进行运算,并同时得出8个结果来!令人吃惊吧,这比较起一个经典的3-bit系统只能得到一个结果来说,运算速度不是快了8倍吗?因为它相当于8个经典计算器同时进行平行运算。可不要小看这个8倍,如果把它看成是\(2^3\)的指数形式,意义就大了。假设我们的量子计算机有100qubit,或者更多的话,你不妨计算一下,计算速度将增快多少?
用一个通俗的比喻,也就是说,经典的原则是:‘魚’和‘熊掌’,不能兼得;而在量子世界中,‘魚’和‘熊掌’竟然可以兼得!这样,一台量子计算机就可以相当于有多台,并且是指数倍增长的多台经典计算机,在同时进行平行运算。可想而知,那速度当然快啰!
本文授权转载于,欲再转载者请联系原作者
Leave a Reply
本网站作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。
(C) &&Designed By &&&基于以下试题来自:
单项选择题纠缠态的什么性质使它可以被用来做量子通信?()
A、探测一个态会同时使两个态坍缩
B、纠缠态是不可约表示,在数学上形式更简单
C、纠缠态比较纠结
D、纠缠态的归一性
为您推荐的考试题库
您可能感兴趣的试卷
你可能感兴趣的试题
A、存在隐变量
B、上帝在扔骰子
C、因果律被违背
D、粒子的波动性
A、系统中两个子系统状态独立
B、波函数不可以分解成两个子系统波函数的直乘积
C、书写态的时候比较纠结
D、子系统是特定力学量算符的独立本征态
A、从样品表面反射的光学信号
B、样品表面发出的电信号
C、样品表面发出的力学信号
D、样品的精神信号
A、电子有较小的概率穿过该势垒
B、电子一定会被势垒弹回
C、电子一定会穿过势垒
D、电子会被束缚在势垒中
A、提高探测粒子的数量
B、将探测粒子聚焦的更准
C、提高探测粒子的动量
D、减小探测粒子的质量普通粒子能形成量子纠缠态吗_百度知道
普通粒子能形成量子纠缠态吗
我有更好的答案
量子纠缠是粒子在由两个或两个以上粒子组成系统中相互影响的现象。有共同来源的两个微观粒子之间存在着某种纠缠关系,不管它们被分开多远,只要一个粒子发生变化就能立即影响到另外一个粒子无论他们距离多远的。
采纳率:93%
来自团队:
为您推荐:
其他类似问题
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。我们可以用量子密钥给经典二进制信息加密。但是当我们需要传输量子比特时,就无法再使用量子密钥了,而需要使用“量子隐形传态”。理解量子隐形传态,首先要理解量子纠缠。
量子力学中最神秘的就是叠加态,而“量子纠缠”正是多粒子的一种叠加态。以双粒子为例,一个粒子A可以处于某个物理量的叠加态,用一个量子比特来表示,同时另一个粒子B也可以处于叠加态。当两个粒子发生纠缠,就会形成一个双粒子的叠加态,即纠缠态。例如有一种纠缠态就是无论两个粒子相隔多远,只要没有外界干扰,当A粒子处于0态时,B粒子一定处于1态;反之,当A粒子处于1态时,B粒子一定处于0态。用薛定谔的猫做比喻,就是A和B两只猫如果形成上面的纠缠态:
无论两只猫相距多远,即便在宇宙的两端,当A猫是“死”的时候,B猫必然是“活”;当A猫是“活”的时候,B猫一定是“死”(当然真实的情况是猫这种宏观物体不可能把量子纠缠维持这么长时间,几亿亿亿亿分之一秒内就会解除纠缠。但是基本粒子是可以的,比如光子。)。这种跨越空间的、瞬间影响双方的量子纠缠曾经被爱因斯坦称为“鬼魅的超距作用”(spooky action at a distance),并以此来质疑量子力学的完备性,因为这个超距作用违反了他提出的“定域性”原理,即任何空间上相互影响的速度都不能超过光速。这就是著名的“EPR佯谬”(编者注:EPR是三位物理学家姓氏的首字母缩写,其中,E是爱因斯坦,P是波多尔斯基,R是罗森,1935年,他们三人为论证量子力学的不完备性而提出了该佯谬)。后来物理学家玻姆在爱因斯坦的定域性原理基础上,提出了“隐变量理论”来解释这种超距相互作用。不久物理学家贝尔提出了一个不等式,可以来判定量子力学和隐变量理论谁正确。如果实验结果符合贝尔不等式,则隐变量理论胜出。如果实验结果违反了贝尔不等式,则量子力学胜出。
表4.贝尔不等式的意义但是后来一次次实验结果都违反了贝尔不等式,即都证实了量子力学是对的,量子纠缠是非定域的,而隐变量理论是错的,爱因斯坦的定域性原理必须被舍弃。2015年,荷兰物理学家做的最新的无漏洞贝尔不等式测量实验,基本宣告了定域性原理的死刑。一些新的理论研究指出,微观上的量子纠缠与宏观的热力学第二定律,即熵增定律有着密不可分的关系。微观系统产生的纠缠具有不可逆性,会导致信息的增加(例如一个量子比特所含的信息是零个比特,但是两个量子比特纠缠在一起,就会产生两个比特的冗余信息)。根据香农提出的信息论,系统熵正比于冗余的信息(即无用的信息),因此宏观系统熵的增加,其根源很可能就来自微观的量子纠缠。
随着量子信息学的诞生,量子纠缠已经不仅仅是一个基础研究,它已经成为了量子信息科技的核心:例如利用量子纠缠可以完成量子通信中的量子隐形传态,可以完成一次性操作多个量子比特的量子计算。让更多的粒子纠缠起来是量子信息科技不断追寻的目标。特别声明:本文为网易自媒体平台“网易号”作者上传并发布,仅代表该作者观点。网易仅提供信息发布平台。
一键安装官方客户端
重大事件及时推送 阅读更流畅
http://dingyue.nosdn.127.net/NhLFeBRUdyk5Pqzbtg=Cs6jIsI9LKEAbQmrV0HoMSsagd2.jpg

我要回帖

更多关于 动态粒子背景 的文章

 

随机推荐