线性代数 考研数学 齐次线性方程组的解基础解系 20题的第三问

A是m*n矩阵其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可你矩阵证明BA的行向量也是Cx=0的基础解系大学线性代数数问题_百度作业帮
A是m*n矩阵其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可你矩阵证明BA的行向量也是Cx=0的基础解系大学线性代数数问题
A是m*n矩阵其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可你矩阵证明BA的行向量也是Cx=0的基础解系大学线性代数数问题
证明: 因为A的行向量是Cx=0的解所以 CA^T=0.所以 C(BA)^T=CA^TB^T=0所以 BA的行向量也是Cx=0的解.由A的行向量是Cx=0的基础解系又因为B可逆, 所以 m=r(A)=r(BA)所以 BA的行向量也是Cx=0的基础解系.
设m×n矩阵A的m个行向量是齐次线性方程组Cx=0的一个基础解系,又B是一C(BA)^T=0,BA的行向量也是Cx=0的一组解,B是一个m阶可逆矩阵,A的秩
把A写成向量形式 a1 a2 --BA每一行是a1 a2 --am的线性组合,所以是解且rank不变 所以是基础解系
看到问题我怀念起了我们大学一年级的数学老师依稀记得一年下来我见过你三次,第一次开学第一学期,第二次是上课要点名,第三次就是谢师宴。一日为师,终生为师,老师你一路走好!线性代数的题目设AX=B为非齐次线性方程组,Xo为其一个特解,X1,Xt为其导出组的一个基础解系,证明Xo~Xt线性无关_百度作业帮
线性代数的题目设AX=B为非齐次线性方程组,Xo为其一个特解,X1,Xt为其导出组的一个基础解系,证明Xo~Xt线性无关
线性代数的题目设AX=B为非齐次线性方程组,Xo为其一个特解,X1,Xt为其导出组的一个基础解系,证明Xo~Xt线性无关
证:设有关系kXo+k1X1+k2X2+...+kn-1Xt=0,用矩阵A左乘上式两边,得0=A(kXo+k1X1+k2X2+...+kn-1Xt)=kAXo+k1AX1+k2AX2+...+kn-1AXt=kB,但B≠0,由上式知k=0,于是 k1X1+k2X2+...+kn-1Xt=0因向量组X1,X2,...,Xt是对应齐次方程的基础解系,从而线性无关,所以k1=k2=...=kn-1=0,由定义知Xo,X1,X2,...,Xt线性无关.考研数学学习计划(基础阶段)数学一――线性代数_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
考研数学学习计划(基础阶段)数学一――线性代数
阅读已结束,如果下载本文需要使用
想免费下载本文?
你可能喜欢2012考研数学线性代数知识点大全31-第3页
上亿文档资料,等你来发现
2012考研数学线性代数知识点大全31-3
向量的角度来看是否能对题目有新的体会;20、齐次线性方程组的练习,基本题型,必需的练习;21、实际上转化为线性方程组的题目,也是基本题型;22、就是习题三的15题,两者无本质区别;23、基本题,求方程组的基础解系,另外注意公共解;24、题目涉及的重要命题有两个,一是:若AB=0;25、与伴随阵的秩有关的著名命题,常用结论,一定;26、非齐次线性方程组的练习,
向量的角度来看是否能对题目有新的体会。 20、齐次线性方程组的练习,基本题型,必需的练习,尤其是(3)这类系数由通式给出的方程,在考研中出现的概率更高,注意不要出错。 21、实际上转化为线性方程组的题目,也是基本题型。 22、就是习题三的15题,两者无本质区别。 23、基本题,求方程组的基础解系,另外注意公共解实际上就是方程组联立后的结果。24、题目涉及的重要命题有两个,一是:若AB=0,则R(A)+R(B)&=0;另一个是:R(A)+R(B)&=R(A+B)。至于证明本身,只是这两个命题在某种特殊情况下的综合应用,解答过程给我们的提示相对来说是更重要的。 25、与伴随阵的秩有关的著名命题,常用结论,一定要掌握。证明过程很多参考资料都给出了。 26、非齐次线性方程组的练习,基本题型。 27、考察线性方程组的解的结构,较好的融合了该部分的相关知识点,通过此题的练习可以加深解的结构相关概念的理解。 28、讨论参数取值对方程组的解的影响,基本题,以向量组的语言给出而已。 29、把线性方程组和空间解析几何的知识点相结合的一道题目,可以作为一个提高练习,不强求掌握。 30、以抽象的向量形式给出线性方程组的问题,考研典型题之一,解决此题需要综合应用线性方程组和向量组的若干知识点,重点掌握和理解的对象。 31、32、33都是涉及解的结构的证明题,其中对基础解系的理解要清晰:基础解系是线性无关的,同时所有的解都可由基础解系表示,由此可见基础解系本身就给出了许多强有力的信息,这个在题目中一定要多加利用。同时还有一些解的结构的命题,如非次方程解的差即齐次方程解,等等,也可以通过这几道练习中来加强理解和掌握。 34及以后的向量空间的题目都不作要求,最多是40题的过渡矩阵了解一下即可,具体解法可参加书上例题,这里不再详述。 通过三、四章的学习和练习,我们体会到,要学好线代,需要建立起良好的思维习惯,即面对线性代数的知识点,常常需要从不同的角度(方程组角度、向量组角度和矩阵角度)去理解同一个数学事实或数学命题,并且它们通常还是可以互推的,所以在线代里,“见一反三”非常重要,一旦抓住了整个知识网络,线代就会成为考研数学里最简单的一环。
同济五版《线性代数》习题解读(五) 1、涉及与正交相关的条件的基本计算题,可作为运算方面的练习。 2、施密特正交化的计算,很重要的基本题,要注意的是施密特正交化的计算公式难于记忆,最好是把正交化的整个过程搞清楚,也就是说:给你一组向量,你要把它们化成正交的,怎么做?可以先考虑简单情形,两个向量怎么正交化?很简单,只要一个向量减去它在另外一个上的投影就可以了。那三个向量怎么正交化?先把其中两个正交化,然后第三个减去它在另外两个的平面上的投影就好了。依次类推,就不难理解施密特正交化中每个公式的意义了。3、判断矩阵是不是正交阵,按定义即可,基本题。 4、5是简单的涉及正交矩阵概念的证明题,从定义出发,都不难得到结论。 6、求特征值和特征向量的基本题型,需要练习纯熟。 7、证明特征值相同,按特征值定义即可,此命题可作为结论用。 8、较难的一道题,把线代里几个重要的知识点都综合在一起考察,关键在于问题的转化:有公共的特征向量问题即两个方程组有公共解的问题,然后用与方程组的基础解系有关的知识点解决,要重点体会解题思路。 9、10、11都是与特征值有关的一些命题,从定义出发不难证明,线代里的概念大多都要从定义上去抓住它们,把它们理解好。其中10题是一个常用的结论。 12、13是特征值性质的应用,即特征值与矩阵特有的对应关系,比如矩阵作多项式运算,则其特征值也就该多项式规律变化,基本题,也是常见题型。 14、考察相似的概念,仍然是要把握好定义,何为相似? 15、16题涉及到相似对角化,这就要求把相似对角化的条件搞清楚,那么什么样的矩阵可相似对角化?条件是特征向量线性无关,从这点出发就可以解决问题。至于16(1)则是特征值特征向量定义的直接考察。 17、18涉及到求矩阵的乘方,实际上特征值特征向量问题就可以看作是为了简化矩阵乘方运算提出的,这里自然是化为对角阵以后计算,18题是应用题形式。 19、20题涉及正交的相似变换矩阵,基本题,计算量较大且容易出错,是值得重视的练习。21、22、23题则是特征值问题的反问题,实际上把已知的对角矩阵看作出发点即可。值得注意的是:对一般矩阵来说,不同的特征值对应的特征向量是线性无关的;对对称矩阵来说,不同的特征值对应的特征向量不仅线性无关,还是正交的,这显然是个更有用的结果。24是一个重要命题,它涉及到由一个列向量生成的矩阵的特征值问题。实际上有一个列向量生成的矩阵其秩是1,而且是对称的,所以必可对角化,故0是其n-1重特征值,至于非零特征值,也不难求出,就是这个列向量转置后生成的数。此题的结论很常用,要重点掌握。25题涉及求矩阵的多项式运算,不外乎就是乘方运算,与17、18题类同。 26、27题考察二次型的概念,基本题,要求熟练写出一个二次型所对应的矩阵,反过来也一样。 28、29题考察用正交变换化二次型为标准型,实际上就是一个对角化的问题,但因为是对称矩阵,所以既可正交又可相似对角化。同时要注意二次型的几何意义:是一个二次曲面。曲面的形状在不同的坐标系下都是一样的,所以对于一个复杂的二次型,若不能直接看出它是什么曲面,可以通过化为主坐标系下的二次型(即标准型)来进行观察。 30、综合性较强的一道题,转化为多元函数的条件极值问题即可。 31、用配方法化二次型的练习,基本题,注意计算不要出错。 32、33都是判断二次型的正定性,对于具体给出的二次型,用顺序主子式的符号即可判断,这个是其中一个充分必要条件。 34、实际给出了正定的另一个充分必要条件,证明过程涉及一个抽象矩阵,故只能从最基本的正定的定义出发,此命题是一个有用的结论,要求掌握。 最后是一些线性代数核心知识点的相关思维训练 学好线代的最关键要点在于“见一反三”,即面对同一个数学事实,都要能够从线性方程组、向量和矩阵三个角度来表述和理解它,以便于根据解决问题的需要选择合适的切入点。现将一些个人觉得比较锻炼思维的习题汇总如下,相信通过对这些题目涉及的命题及其推理过程进行深入思考,会有助于更进一步把握好线代的知识体系。 1、任何一个向量α=(a1, a2, ..., an)都能由单位向量ε1=(1, 0, ..., 0)、ε2=(0, 1, ..., 0)、??、εn=(0, 0, ..., 1)线性表出,且表示方式唯一。 2、向量组α1,α2,?,αn中任一个向量αi可以由这个向量组线性表出。 3、判断下列说法正确性:(1)“向量组α1,α2,?,αn,如果有全为零的数k1, k2, ..., kn使得k1*α1+k2*α2+?+kn*αn=0,则α1,α2,?,αn线性无关。”(2)“如果有一组不全为零的数k1, k2, ..., kn,使得k1*α1+k2*α2+?+kn*αn≠0,则α1,α2,?,αn线性无关。”(3)“若向量组α1,α2,?,αn(n≥2)线性相关,则其中每一个向量都可以由其余向量线性表出。” 4、三维空间中的任意4个向量必线性相关。 5、n+1个n维向量必线性相关。 6、如果向量组α1,α2,α3线性无关,则向量组2α1+α2,α2+5α3,4α3+3α1也线性无关。 7、如果向量组α1,α2,α3,α4线性无关,判断向量组α1+α2,α2+α3,α3+α4,α4+α1是否线性无关。 8、如果向量β可以由向量组α1,α2,?,αn线性表出,则表出方式唯一的充分必要条件是α1,α2,?,αn线性无关。 9、设向量组α1,α2,?,αn线性无关,β=k1*α1+k2*α2+?+kn*αn。如果对于某个ki≠0,则用β替换αi后得到的向量组α1,?,α(i-1),β,α(i+1),?,αn也线性无关。10、由非零向量组成的向量组α1,α2,?,αn(n≥2)线性无关的充分必要条件是每一个αi(1&i≤n)都不能用它前面的向量线性表出。 11、设α1,α2,?,αn线性无关,且(β1,β2,?,βn)=A(α1,α2,?,αn),则β1,β2,?,βn线性无关的充分必要条件是A的行列式为零。 12、秩为r的向量组中任意r个线性无关的向量都构成它的一个极大线性无关组。13、任一n维向量组若是线性无关的,那么其所含向量数目不会超过n。 14、如果n维向量构成的向量组α1,α2,?,αn线性无关,那么任一n维向量β可由α1,α2,?,αn线性表出。 15、如果任意的n维向量都可以由α1,α2,?,αn线性表出,那么α1,α2,?,αn线性无关。 16、如果秩为r的向量组可以由它的r个向量线性表出,则这r个向量构成的向量组就是它的一个极大线性无关组。 17、n个方程的n元线性方程组x1*α1+x2*α2+?+xn*αn=β对任何β都有解的充分必要条件是它的系数行列式为零。 18、如果向量组α1,α2,?,αn和向量组α1,α2,?,αn,β有相同的秩,则β可以由α1,α2,?,αn线性表出。 19、r(α1,α2,?,αn,β1,β2,?,βm)≤r(α1,α2,?,αn)+r(β1,β2,?,βm)。 20、矩阵的任意一个子矩阵的秩不会超过原矩阵的秩。 21、如果m*n的矩阵A的秩为r,那它的任何s行组成的子矩阵A1的秩不会小于r+s-m。22、如果一个n*n矩阵至少有n^2-n+1个元素为0,则这个矩阵不是满秩矩阵。 23、如果一个n*n矩阵至少有n^2-n+1个元素为0,那么这个矩阵的秩最多是多少?24、设η1,η2,?,ηt是齐次线性方程组的一个基础解系,则与η1,η2,?,ηt等价的线性无关的向量组也是方程组的一个基础解系。 25、设n元齐次线性方程组的系数矩阵的秩是r(r&n),则方程组的任意n-r个线性无关的解向量都是它的一个基础解系。 26、设n元齐次线性方程组的系数矩阵的秩是r(r&n),设δ1,δ2,?,δm是方程组的解向量,则r(δ1,δ2,?,δm)≤n-r。 27、设n个方程的n元线性方程组的系数矩阵A的行列式等于零,同时A至少存在一个元素的代数余子式A(kl)不为零,则向量(A(k1), A(k2), ..., A(kn))是这个齐次线性方程组的一个基础解系。 28、设A1是s*n矩阵A的前s-1行组成的子矩阵,如果以A1为系数矩阵的齐次线性方程组的解都是方程a(s1)*x1+a(s2)*x2+?+a(sn)*xn=0的解,其中a(ij)是矩阵A的元素,则A的第s行可以由A的前s-1行线性表出。 29、n个方程的n元非齐次线性方程组有唯一解当且仅当它对应的齐次方程组只有零解。30、如果η1,η2,?,ηt都是n元非齐次线性方程组的解,并且有一组数u1,u2,?,un满足u1+u2+...+un=1,则u1*η1+u2*η2+?+ut*ηt也是方程组的一个解。 31、如果ν0是非齐次线性方程组的一个特解,η1,η2,?,ηt是它对应的齐次方程组的一个基础解系,令ν1=ν0+η1,ν2=ν0+η2,?,νt=ν0+ηt,则非齐次线性方程组的任意一个解可以表示为ν=u0*ν0+u1*ν1+u2*ν2+...+ut*νt,其中u0+u1+u2+...+ut=1。32、设A是s*n矩阵,如果对于任意列向量η,都有Aη=0,则A=0。 33、两个n级上三角矩阵的乘积仍是n级上三角矩阵,且乘积矩阵的主对角元等于因子矩阵的相应主对角元乘积。 34、与所有n级矩阵可交换的矩阵一定是n级数量矩阵。 35、对任一s*n矩阵A,AA'和A'A都是对称矩阵。 36、两个n级对称矩阵的和仍是对称矩阵,一个对称矩阵的k倍仍是对称矩阵。 37、两个n级对称矩阵的乘积仍是对称矩阵的充分必要条件是它们可交换。包含各类专业文献、高等教育、文学作品欣赏、各类资格考试、专业论文、生活休闲娱乐、外语学习资料、中学教育、2012考研数学线性代数知识点大全31等内容。 
 2012 考研数学线性代数重点内容和典型题型总结 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点 比较突出,以计算题为主,证明题为辅,因此,万...  考研数学重要知识点解析:线性代数( 2012 考研数学重要知识点解析:线性代数(一)万学海文 数学虽然属于理科科目,但是仍然有许多重要的知识点需要记忆和运用。 数学虽然...  考研数学重要知识点解析――线性代数( ――线性代数 2012 考研数学重要知识点解析――线性代数(二)万学海文 数学虽然属于理科科目,但是仍然有许多重要的知识点需要记...  2012考研数学线性代数题型总结大纲解析:核心提示:教材把线性代数的内容分为了六章...考生在做题过程中,应该能发现,线性代数部分考察的知识点 和题型都相对固定,以下...  关键词:考研线性代数 同系列文档 考研哲学学科排名 上财考研经济学自己总结版 考研...2012考研数学重要知识点解... 3页 免费 2012考研数学重要知识点解... 2页 ...  考研数学重要知识点解析:线性代数( 2012 考研数学重要知识点解析:线性代数(一)万学海文 数学虽然属于理科科目,但是仍然有许多重要的知识点需要记忆和运用。 数学虽然...  2012考研数学_线性代数超级总结 隐藏&& 线性代数 超级总结概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 ? ? ? ? ? ? ? ? A ? 0 ? ? ? ?...  ? ?, e n 线性无关; ③ e1 , e 2 , ? ? ?, e n ? 1 ;④ tr...2012考研数学重要知识点... 3页 免费喜欢此文档的还喜欢 线性代数超强总结 12...  2012 考研数学大纲解析:线性代数无变化 2012 年全国硕士研究生入学统一考试数学大纲...所以在学习过程中考生更要注重理解,多思考总结,注重知识 点的衔接与转换,知识要...2016考研数学线性代数:齐次线性方程组
15:42:13 |
在考研数学的各个卷种中,线性代数占22%,约34分,每年的考题里,线性代数稳定的考查2道选择题、1道填空题和2道解答题。以下是中公考研数学辅导老师就线性代数的齐次线性方程组解析。
1. 线性方程组的形式
线性方程组除了通常的写法外,还常用两种简化形式:
矩阵式 AX=b,(齐次方程组AX=0).
向量式 x1a1+x2a2+&+xsas= b, (齐次方程组x1a1+x2a2+&+xsas=0).
2. 线性方程组解的性质
(1) 齐次方程组AX=0
如果h1, h2,&,hs是齐次方程组AX=0的一组解,则它们的任何线性组合c1h1+ c2h2+¼ + cshs也都是解.
(2) 非齐次方程组AX=b
如果x1, x2,&,xs是AX=b的一组解,则
① 它们的线性组合c1x1+ c2x2+&+csxs也是AX=b解的&Uc1+ c2+&+cs=1.
② 它们的线性组合c1x1+ c2x2+&+csxs是AX=0的解&U c1+ c2+&+cs=0.
如果x0是AX=b的一个解,则n维向量(n是未知数的个数) x也是解&Ux-x0是导出齐次方程组AX=0的解.(也就是说, x是x0与导出组AX=0的一个解的和.)
3. 线性方程组解的情况的判别
对于方程组AX=b,判别其解的情况用三个数:未知数的个数n,r(A),r(A|b).
① 无解&Ur(A )
② 有唯一解&Ur(A )=r(A|b)=n.
(当A是方阵时,就推出克莱姆法则.)
③ 有无穷多解&Ur(A )=r(A|b)
方程的个数m虽然在判别公式中没有出现,但它是r(A)和r(A|b)的上界,因此
当r(A)=m时, AX=b一定有解.
对于齐次方程组AX=0,判别解的情况用两个数: n,r(A).
有非零解&U r(A )=
推论1 当A 列满秩时, A 在矩阵乘法中有左消去律:
AB=0ÞB=0;AB=ACÞB=C.
证明 设B=(b1,b2,&,bt),则AB=0&UAbi=0,i=1,2,&,s. &Ub1,b2,&,bt都是AX=0的解. 而A 列满秩, AX=0只有零解, bi=0,i=1,2,&,s,即B=0.
推论2 如果A列满秩,则r(AB)=r(B).
证明 只用证明齐次方程组ABX=0和BX=0同解.(此时矩阵AB和B 的列向量组有相同的线性关系,从而秩相等.)
h是ABX=0的解&UABh=0&UBh=0(用推论1)&Uh是BX=0的解.
于是ABX=0和BX=0确实同解.
4. 齐次方程组的基础解系 线性方程组的通解
(1) 齐次方程组的基础解系
如果齐次方程组AX=0有非零解,则它的解集(全部解的集合)是无穷集,称解集的每个极大无关组为AX=0的基础解系.
于是, 当h1, h2,&,hs是AX=0的基础解系时:
向量h是AX=0的解&Uh可用h1, h2,&,hs线性表示.
定理 设AX=0有n个未知数,则它的基础解系中包含解的个数(即解集的秩)=n-r(A ).
于是,判别一组向量h1, h2,&,hs是AX=0的基础解系的条件为
① h1, h2,&,hs是AX=0的一组解.
② h1, h2,&,hs线性无关.
③ s=n-r(A ).
推论 如果AB=0,n为A的列数(B的行数),则r(A)+r(B)&n.
证 记B=(b1, b2,¼, bs),则Abi=0,i=1,2,¼ ,s,即每个bi都是齐次方程组AX=0的解,从而r(B)= r(b1, b2,¼, bs)&n-r(A),即r(A)+r(B)&n.
(2) 线性方程组的通解
如果h1, h2,&,hs是齐次方程组AX=0的基础解系,则AX=0的通解(一般解)为
c1h1+ c2h2+&+ cshs, 其中c1, c2,&,cs,可取任何常数.
如果x0是非齐次方程组AX=b的解, h1,h2,& ,hs是导出组AX=0的基础解系,则AX=b的通解(一般解)为
x0+c1h1+c2h2+&+cshs, 其中c1, c2,&,cs,可取任何常数.
(责任编辑:liangyan)
更多文章推荐
更多文章推荐
一起考?考研考试

我要回帖

更多关于 非齐次线性方程组的解 的文章

 

随机推荐