nongmiqq邮箱格式怎么写写

REACTION7_GMI_AQHG06
NOVEMBER 2006
Version to go with chemmain1.f (c1 version) and fort.87rb_hg_rpa
also CMAQ 2007 (not original CMAQ 2005 runs)
Full gas-phase chemistry version (Ito, 2006 full)
combined with aqueous and Hg chemistry (Sillman et al., 2007)
CHEMISTRY:
Listing available at:
http://www-personal.umich.edu/~sillman/mechanisms.htm
Ito et al., 2006
Aqueous and halogen:
Sillman et al.,
Sillman et al.,
Ito gas phase:
Equivalent of IMPACT run
November 2005.
(REACTION7_GMI_LKS07
from REACTION7_GMI_LKS06hv, = REACTION5_GMI_LKS06.asc version for IMPACT)
CHEMISTRY = Evans, 2003 (version 5-07-8) + our additions (2004).
includes sulfate, nitrate, chlorine and bromine chemistry
(REACTION.AQHG05aebr4f)
This version has AUTOMATED SPECIAL RATE CONSTANT INPUT
and runs with chemmain1.f (c1 version)
(boxmain1.f boxproc1.f chemmain1.f cheminit1.f chemrates1.f chemsolve1.f
jval2.f linslv.f)
4/06 CORRECTION: ISNR+OH => 0.95 GLYC + 0.95 HAC;
not 1.9 HAC+0.95 ACET.
CHLORINE+BROMINE CHEM:
from Sander and Crutzen, 1996
(skipped BrCl combined species, and aqueous Br2)
WITH AQUEOUS AND HG CHEMISTRY:
including NaOH, Seigneur and HOCL
HG modified from
Seigneur criteria document. (detail below)
HG+ removed.
AQUEOUS CHEMISTRY FROM JACOB, 1986; PANDIS, 1989, LELIEVELD, 1992.
AND INCLUDING SPECIAL EQUILIBRIUM SPECIES.
SOLID Hg and AEROSOL LINK NOT INCLUDED.
OH TRACERS:
OHT1= sum OH*time(hours).
OHT2= becomes aqueous, removed by wet deposition.
OHT3= becomes aqueous, removed rapidly by aqueous chem.
**HO2+HG OPTION:
HG(II)+HO2, O2-:
Gartfeld and Jonsseen 2003
HG CHEMISTRY:
11/04 add:
Br chemistry from Sander and Crutzen, JGR 1996.
HgBr from Ariya 2002 (also Khazilov)
HG from Xiaohong and Frank's references and criteria document
HG from Frank's references (hgmech.xls)
Lin and Pehkonen, AE 32, N14/15, .
Lin and Pehkonen, AE 33, .
Khalizov et al (2003), J. Phys. Chem, 107, .
Lindberg et al. (2002), EST, 36, .
Linqvist and Rodhe, Tellus 37B, 136-159
Pleijel and Munthe, AE 29, N12,
Sanemasa, BCS of Japan, 48(6),
Sommar et al. (2001), AE 35,
HG FROM XIAOHONG:
Lin AE 32, ; JGR 103, 2; AE 33,.
(see xxu file for list of MOLEC WTS, chem formulas, etc.)
rate correction
Hg(0)+Cl2 (g) => HgCL2 (g)
Ariya 2002
Hg(0)+HCLG(g)=> HgCL2 (g)
Hg(0)+H2O2(G) =>HgOH2 (G) 8.5e-19 Tokos 1998
Hg(0)+OH(g)=> HgOH2 (g)
Sommar 2001. (TO DO)
Hg0aq +O3aq=> Hg2+
4.7e7 M-1s-1 Munthe 1992
Hg0 +OHaq=> Hg2+
Lin and Pehkonen 1997
HgSO3 (aq) => Hg(0) (aq)
0.0106 s-1 van Loon et al., 2000
HgII+HO2 (aq) => HG(0)
1.7E-4 Pekhonen and Lin 1998
challenged
challenged by Gardfeldt and Johnson, J Phys chem in press.
HOCL/OCL- CHEMISTRY.
All reactions.
From JPL03.
Hg0+HOCL (OCLA)=>Hg2+ 2.09e6
Lin and Pehk
Hg0+OCL- =>HG2+
HGC2, HGCQ
HGOHCl, HGCL+:
HGCL, HGCA, HGC+
(part of HgCL2 dissoc.)
Hg(OH)2Hg2+:
HGOH, HGHA, HGH+, HG#
HGS3, HG3A, SO3=
HG(SO3)2=:
HGS6, HG6A, HG6-, HG6=
HGX HGXA HG+
HGB2, HGBQ
HGOHBr, HGBr+:
HGBR, HGBA, HGB+
(part of HgBr2 dissoc.)
CL2(g): CL2.
HCLG, HCLA, CL-
CL, CLOH-:
CL, CLA, CLOH
HCL2, CL2q, CL2-
(pseudo-species HCL2.
Formed from CL2-CL+CL- aq.)
HOCL, OCLA, OCL-
BR2(g): BR2.
not BR2A. (BR2Q)
HBRG, HBRA, BR-
BR, BROH-:
BR, BRA, (BROH-cut)
HBR2, BR2A, BR2-
(pseudo-species HBR2.
Formed from BR2-BR+BR- aq.)
HOBR, OBRA, OBR-. Cut for now.
No reactions)
==========
FUTURE WRITING FORMAT CHANGES
(1) a8 throughout:
(2) species read: one species per line, then write shorter summary
(with molecular weight?)
(3) species indices: aqueous-and-odd-h
(aqueous setting for soluble aerosol)
(set lsolaer = T, use for nonsteady state aq partitioning)
FUTURE PROGRAM MODIFICATIONS:
(1) Initial and final partitioning of AQUEOUS into GAS-MASTER
in prelump and postlump.
sum into GAS-MASTER if there is flag
sum into NCHEM1 species, which may include aqueous
to allow output with separate GAS and AQ(with summed ion eq's)
initial input:
set >nchem1=0;
initial input: if aq. how to include?
use input for the new partitioning (below), but
at start, sum AQ into GAS-MASTER? Or regard as AEROSOL?
(2) aqueous nonequilibrium non-steady state option w/flag
gas/aq partitioning:
use input for either DROPLET SIZE or RKgasaq
- forward rate.
(if RKgasaq=0, use Lelieveld calculation.)
Lelieveld 1991 has RKgasaq calculated from DROPLET SIZE
alt would set RKgasaq from droplet size distribution.
(3) expo decay (with
emission var) w/ flag
(4) Direct input of aerosol-dependent reaction rates
Pandis+Seinfeld 2003: k= aersa (gamma/4) [8kT/(pi*MWm)]^0.5
= aersa (gamma/4)
[8RT/(pi*MW)]^0.5
aersa= aerosol surface area
per unit volume cm2/cm3
MWm=molecular mass
(=MW/6e23))
k Boltzman 1.381e-23 J K-1
MW=molecular weight, R=k Bolzman/Avogardo = 8.31448
(5) Gas-aerosol solid equilibrium coefficients
and check equil. e.g. NH4+NO3-(aq)
NH3+HNO3(g) (Pandis and Seinfeld)
Create gas+aqueous combined file.
Rew easier variables and labels, no implicit,
for CMAQ etc.
with chem flag to identify soluble aerosol species
with aqueous equilibrium option to do non-steady state,
using whether species gas or aerosol
with exponential decay option and 'emissions (approx)
- flag usually if aloft/emis=0; or w/ approx emissions for isop at night
========================================================
PRELIMINARY INDICES
kkw = vector write index (write if
kmax = number of vector variables
numitr = maximum number of iterati
converge = criteria for numerical conv
========================================================
CHEMICAL SPECIES NAMES - TRANSPORTED (INPUT/OUTPUT) SPECIES
1, 2 = standard (old: fast/slow)
3=odd-h radicals.
4= peroxides
6=hono/hno4
aqueous odd-H (=CO3).
The program will automatically assign the following categories
based on family identification:
move to end (input, not transported): H2O CH4 H2 CO2
chemistry cut: AHO2
==============================================================================
==============================================================================
CHEMICAL SPECIES NAMES - SECONDARY SPECIES
-- CUT AND REPLACE WITH LUMP, AUTOMATIC ENTRY FROM HENRY+AQUEOUS EQUILIBRIA
(need to insure that these species are automatically added)
==============================================================================
LUMPED SPECIES - NEW COMBINED FORM
L followed by list of its species ('
(the "=" data is old, not used)
==============================================================================
rioh = RIP)
---------------------------------------------------------------------
-----------------------------------------
HENRY'S LAW COEFFICIENTS:
-----------------------------------------
HENRY'S LAW SPECIES NAMES:
AQUEOUS (format a8, 4x,a8).
NOTE: Gas species comes first.
aqueous species (2nd) automatically added to species list.
Index, A, B, accomodation coefficient, molecular weight
format 5xi5,e10.3,f10.0, e10.3, f10.0
Henry's law Coefficient: H=
A*exp(-B*(1/temp-1/298)
Units are moles/liter-atmosphere
---------------------------------------------------------------------
0 3.400E-02
0 1.000E+08
0. 5.000E-02
0 8.330E+04
0 2.500E+01
0 2.000E+03
0 2.100E+05
0. 5.000E-02
0 1.130E-02
0 1.000E-02
0 1.900E-03
0 6.000E+00
0 6.300E+03
0 3.500E+03
0 2.270E+02
0 2.100E+05
0 1.230E+00
0 1.000E+08
0. 5.000E-02
0 5.100E-04
0 2.200E+02
0 7.500E+01
0 2.900E+00
0 4.730E+02
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.100E+00
(7.27e2, -2020. Changed:Sander 96, 1.1e0 2023
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 9.200E-02
0. 1.000E-02
0 4.800E+02
0 7.200E-01
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 4.800E+01
0. 5.000E-02
0 1.000E+02
0. 5.000E-02
0 8.370E+02
0 6.300E+03
0 3.500E+03
0 1.100E-01
0. 5.000E-02
0 1.200E+04
0. 5.000E-02
0 1.400E+06
0. 5.000E-02
0 1.400E+06
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.400E+06
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
0 1.000E+08
0. 5.000E-02
--------------------------------------------------------------------------
-----------------------------------------
AQUEOUS EQUILIBRIUM CONSTANTS
-----------------------------------------
EQUILIBRIUM SPECIES NAMES:
COMBINED SOLUTE = SOLUTE1 + SOLUTE2
(3(a4,4x))
By convention, SOLUTE2 = H+ or OH-.
Also, FIRST EQUILIBRIUM CONSTANT is always 0= H+ + OH-.
NOTE: The Cation/anion X is automatically added to the species list.
Enter aqueous equilibia in sequence:
(1) Neutral species
single cation/anion
must come first, then:
(2) Single cation/anion
double cation/anion
AQUEOUS EQUILIBRIUM CONSTANTS
1st species must be H+ and OH- equilibrium.
SPECIES FORMAT:
XY = X + Y ;
Y must be H+ or OH- (except for 1st species)
NOTE: The Cation/anion C is automatically added to the species list.
EQUIL. CONSTANT FORMAT:
Index, A, B.
(5x,i5,e10.3,f10.0)
Equilibrium constant = A*exp(-B*(1/temp-1/298)
Units are moles/liter.
Constant = [X][Y]/[XY]
--------------------------------------------------------------------------
0 1.000E-14
0 4.460E-07
(fix error:
0 4.680E-11
0 1.000E+08
0 1.230E-02
0 6.610E-08
0 1.000E+03
0 1.020E-02
0 2.200E-12
0 1.600E-05
(3.5e-5 => 16e-5 MECCA Sander 04)
0 1.540E+01
(Sander 96: 1.5e1,0)
0 5.100E-04
0 1.700E-05
(1.75e-5, 450 -> 1.7e-5, -4325 Sander 96)
0 1.820E+03
(MECCA: 1.8E-4)
0 1.780E-04
0 2.000E-12
0 1.000E+08
0 1.000E+08
0 1.000E+08
0 1.740E+06
0 6.190E-08
0 1.000E+08
0 3.162E-08
0 1.000E+09
(Sander 96)
0 1.000E+08
0 2.100E-09
0 1.780E-04
0 1.780E-04
0 2.344E-11
0 2.455E-12
0 1.122E-11
0 1.122E-11
0 1.000E+08
0 1.000E+08
0 1.000E+08
0 1.000E+08
22 6.190E-08
--------------------------------------------------------------------------
-----------------------------------------
SPECIAL EQUILIBRIUM CONSTANTS
-----------------------------------------
X = Y + Z ;
EQUILIBRIUM SPECIES NAMES:
COMBINED SOLUTE = SOLUTE1 + SOLUTE2
(3(a4,4x))
but not used in v5
used in v5q or v7.
The species must be included in the species list
generated from standard aqueous equilibrium.
This is for use with equilibria that do not involve H+ or OH-
and where the second solute (Z1, Z2, etc.) has much higher
concentration then X1 or Y
(e.g. HgSO3
Hg# + SO3=).
Or if Z1 is zero.
By convention, this defines a series of COMBINED SOLUTES that are
all in equilibria with SOLUTE1.
It can also represent a CHAIN of solutes, if the CHAIN is entered
in the order illustrated above with X3 and X2. The CHAIN LINK must
be through SOLUTE 1.
This is designed for aqueous, but it can be used for back-forth
gas-phase species also.
Units will be recognized automatically.
EQUILIBRIUM CONSTANT:
A, B, RATE INDEX (format10x,2e10.3,5x,i5)
= A*exp(-B*(1/temp-1/298).
= [X][Y]/[XY]
UNITS ARE MOLES/LITER.
(Nondimensional for A1=B;
molec/cm3 for gas.)
--------------------------------------------------------------------------
0 1.995E-13
(1.995E-13. 1/2.1e13, van Loon 2001)
0 3.981E-12
(3.981E-12=>1/1E10
van Loon 2001)
0 6.012E-08
(1e-14 M2 combined in Seigneur. OK)
0 1.995E-07
0 5.260E-06
0 6.012E-08
(1e-14 M2 combined in Seigneur. OK)
0 1.995E-07
0 9.100E-06
(Sander 96)
-----------------------------------------------------------------------
---------------------
REACTIONS, RATES AND STOICHIOMETRIES:
---------------------
R1 + R2 => X1*P1 + X2*P2 + X3*P3.
R1='MORE':
Continuation flag. R1,P3='NEXT':
ON TO NEXT REACTION.
R1,P3=' END':
END OF SECTION.
hv'=HV REACTION,'
x'=no product.
***NOTE***: KEEP COLUMN ORDER FIXED.
KEEP REACTIONS #1-24 FIXED IN THE SAME ORDER.
---------------------
RATE CONSTANTS
---------------------
RATE CONSTANTS ARE READ AS AN INDEX (giving the formula type)
FOLLOWED BY UP TO SEVEN PARAMETERS:
(A, B, C, D, E, F, G)
UNITS are MOLECULES/CM2-SEC (or equivalent) FOR GAS-PHASE REACTIONS.
and MOLES/LITER-SEC for AQUEOUS REACTIONS.
(Aqueous reactions are automatically identified by species type.)
HVRATES ARE IDENTIFIED BY '
hv' IN REACTION.
IF NOT SPECIFIED,
HV RATES ARE ALL SET IN PROPORTION TO NO2+hv->NO+O3, THE FIRST REACTION.
The table hv rate constant gives ratio of hv rate to jNO2.
AQUEOUS REACTIONS ARE IDENTIFIED AUTOMATICALLY IF THEY INVOLVE AQUEOUS SPECIES.
(AQUEOUS SPECIES ARE IDENTIFIED BY HENRY'S LAW RATES, BELOW.)
AQUEOUS RATE UNITS:
moles per liter or equivalent.
-----------------------
The INDEX determines both the read format and the rate formula:
0 = standard form, ratek = A exp(-B/T)
10x, e10.3, f8.0
-1 = standard form 298, ratek = A exp(-B*(1/T-1/298))
10x, e10.3, f8.0
-2 = standard form *T;
A exp(-B/T) (T/300)^C
10x, e10.3, f8.0, f6.1
-3 = 3-body BOD function of five parameters: 10x,f6.2,e10.3,f6.1,e10.3,f6.1
-4 = Aexp(-B/T)* 3-body BOD function of (C,D,E,F,G)
10x, e10.3, f8.0, f6.2,e10.3,f6.1,e10.3,f6.1
A exp(-B/T) * (1-ytn(C))
for nitrate yield
e10.3, f8.0, f6.1
A exp(-B/T) * (
for nitrate yield
Density-dependent ratio format (for CO, GLYX+OH):
A exp(-B/T)* (C + D*dens)/(E + F*dens) , e10.3, f8.0,4e10.3
Ratio of two reactions (K=K1/(1+K2)) with temp+ density-dependent K2
form MO2+MO2, etc., and density-dependent DMS+OH
A exp(-B/T) / (1 + (C+E*dens)* exp(-D/T)), e10.3, f8.0, e10.3 f8.0, e10.3
Special H2O2 rate: (Aexp(-B/t) + C*dens*exp(-D/t)) *(1+ E exp(-F/T)*H2O)
3(e10.3, f8.0)
Special HNO3 rate:
3(e10.3, f8.0)
A exp(-B/t) + C exp(-D/t)*dens*E exp(-F/t)/(Cexp(-D/T)*dens+Eexp(-F/T))
-11 Special C3H8 rate:
Aexp(-B/t)/(1+C*T/300^(D*exp(-E/t)))
10x, e10.3, f8.0, e10.3, f8.3, f8.0
of two reactions (ACET): Aexp(-B/T) + Cexp(-D/T)
10x, e10.3,f8.0, e10.3, f8.0
special, also modify O3+hv special. Use c_h2ogas.
Remove from species list?
CUT THESE TWO, NOT USED.
-13 = 3-body BOD function of five parameters: 10x, f6.2,e10.3,f6.1,e10.3,f6.1
with k0 density-dependent
-14 = Aexp(-B/T)* 3-body BOD function of (C,D,E,F,G)
with k0 density-dependent
10x, e10.3, f8.0, f6.2,e10.3,f6.1,e10.3,f6.1
reaction on sulfate aerosol: gamma, molec. weight. 10x, e10.3, f8.0
gamma = reaction efficiency.
uses saersa = sulfate aero surface area per unit volume cm2/cm3
(entered elsewhere).
ratek = saersa*(gamma/4)* [8RT/(pi*MW)]^0.5
(Pandis + Seinfeld)
>0 = hv rates from table (1-56).
Rate = j-value table value (TUV) for given index MULTIPLIED by A
>100 = special rates (old format)
or special j-values
-30 =hv rate relative to NO2 (also identified by regative rate)
-31 =hv rate relative to O3 (future)
NOTES: bod
c From NASA 1997 (DeMore, p.8):
b = ko(300) = Low pressure limit at 300 K.
c = exponent for temperature adjustment, -n in NASA.
(ko(T)=ko(300)*(T/300)**c)
d = kinf(300) = High pressure limit at 300 K.
e = exponent for temperature admustment, -m in NASA.
(kinf(T)=kinf(300)*(T/300)**e)
u = Fc, base for exponent in log-T-P adjustment, always 0.6 in NASA.
f1=b*((tempx/300.)**c)*denx
f2=f1/( d * ((tempx/300.)**e))
ee= 1. / ( 1 + (log10(f2))**2. )
bod = (f1/(1+f2) ) * u ** ee
NOTES bod finished.
--------------------------------------------------------------------------
JPL 2002 =bod(.60D0,6.90D-31,-1.0D0,2.60D-11,-0.0
0.60 6.900E-31
-1.0 2.600E-11
Special rate from Chameides (1996?) 113
(Aexp(-B/t) + C*dens*exp(-D
-600. 1.700E-33
JPL 92 1.5E-13*(1+0.6*Patm)
A exp(-B/T)* (C + D*dens)/(E + F
0. 1.000E+00 2.400E-20 1.000E+00 0.000E+00
Evans/Fiore from Tyndall
A exp(-B/T) / (1 + (C+E*dens)* e
-750. 2.000E-03
Tyndall, Elrod
A exp(-B/T) / (1 + (C+E*dens)* exp(-D/T))
-750. 4.980E+02
A exp(-B/T) / (1 + (C+E*dens)* exp(-D/T))
-390. 2.620E+01
A exp(-B/T) / (1 + (C+E*dens)* exp(-D/T))
-390. 4.000E-02
Sanders 2003 (JPL02) =bod(.60D0,2.00D-30,-3.0D0,2.50D-11,-0.0 103
0.60 2.000E-30
-3.0 2.500E-11
Special HNO3 rate (Harvard) 115: A exp(-B/t) + C exp(-D/t)*E exp(-F
-460. 6.510E-34
DeMore 1997 =bod(.60D0,7.00D-31,-2.6D0,3.60D-11,-0.1D0
0.60 7.000E-31
-2.6 3.600E-11
Sander 2003 =bod(.60D0,1.80D-31,-3.2D0,4.70D-12,-1.4
0.60 1.800E-31
-3.2 4.700E-12
Harvard/GMI bod(.60D0,8.64D-05,-3.2D0,2.24D+15,-1.4D0
0.60 8.640E-05
-3.2 2.240E+15
JPL 2000 R= bod(.60D0,2.00D-30,-4.4D0,1.40D-12,-0.7D0
0.60 2.000E-30
-4.4 1.400E-12
JPL 2000 bod(.60D0,6.67D-04,-4.4D0,4.67D+14,-0.7D0) 111
0.60 6.670E-04
-4.4 4.670E+14
Tyndall 2001 =bod(.60D0,8.50D-29,-6.5D0, 1.1D-11,-1.0D0 105
0.60 8.500E-29
-6.5 1.100E-11
Tyndall 2001 =Aexp(-B/T)*bod
116 link to 10link to 105
0.60 8.500E-29
-6.5 1.100E-11
Fiore from IUPAC02. 158 Special format Aexp(-B/t)/(1+C*T/300^(D*exp
585. 5.870E+00
Fiore from IUPAC02. 159 Special format Aexp(-B/t)/(1+C*T/300^(D*exp
585. 1.700E-01
Atkinson and Arey,
1.830E-17*300^2
A exp(-B/T) (T/300)^
A exp(-B/T) * (1-ytn(C)) 121
A exp(-B/T) * (
ytn(C)) 122
A exp(-B/T) * (1-ytn(C)) 140
A exp(-B/T) * (
ytn(C)) 141
A exp(-B/T) * (1-ytn(C)) 142
A exp(-B/T) * (
ytn(C)) 143
A exp(-B/T) * (1-ytn(C)) 144
A exp(-B/T) * (
ytn(C)) 145
A exp(-B/T) * (1-ytn(C)) 146
A exp(-B/T) * (
ytn(C)) 147
JPL02 =bod(.60D0,9.00D-28,-8.9D0,7.70D-12,-0.2D0 107
0.60 9.000E-28
-8.9 7.700E-12
JPL02 for RCO3/PPN 108
0.60 9.000E-28
-8.9 7.700E-12
JPL02 for RCO3/PPN 109
0.60 9.000E-28
-8.9 7.700E-12
JPL 02 kf/Keq form = Aexp(-B/T)*bod
160 link to 116
0.60 9.000E-28
-8.9 7.700E-12
JPL 02 PPN.
kf/Keq form = Aexp(-B/T)*bod
0.60 9.000E-28
-8.9 7.700E-12
JPLO2 two-reaction format Aexp(-B/T)+Cexp(-D/T)
0. 0.000E+00
Evans/Fiore from IUPAC02
A exp(-B/T) (T/300)^C
A exp(-B/T) / (1 + (C+E*dens)* exp(-D/T))
660. 0.000E+00
A exp(-B/T) / (1 + (C+E*dens)* exp(-D/T))
-660. 0.000E+00
Harvard/IUPAC 2003 =bod(.50D0,8.00D-27,+3.5D0,3.00D-11,+1.0D0 150
0.50 8.000E-27
3.5 3.000E-11
JPL 02 PPN.
kf/Keq form = Aexp(-B/T)*bod
0.60 9.000E-28
-8.9 7.700E-12
Harvard/GMI, Fiore from Tyndall,
K=K1* ([O2]+3.5D18)/(2*[
0. 3.500E+18 2.090E-01 3.500E+18 4.180E-01
Harvard/GMI, Fiore from Tyndall,
K=K1* ([O2]+3.5D18)/(2*[
E+18 2.090E-01 3.500E+18 4.180E-01
+sulfate aerosol 154
(if SAERSA=1e-6 cm2/cm3, r=2e-3 s-1)
+ sulfate aerosol 155
+ sulfate aerosol 156
+sulfate aerosol 157
2=O3+hv=>O1D 102=special O3+hv=>H2O
1.000E+00 1.318E-01
CORRECTION 4/06:
0.95 HAC 0.95 GLYC not 1.9 HAC 0.95 ACET
A exp(-B/T) * (1-ytn(C)) 123
A exp(-B/T) * (
ytn(C)) 124
Harvard/IUPAC 2003 =bod(.48D0,7.00D-29,+3.1D0,9.00D-12,-0.0D0 164
0.48 7.000E-29
3.1 9.000E-12
Fiore from Atkinson 89, yields Chatfield 90, sum Chin 96. K=K1/(1+K2
Demore, 1997 = bod(.60D0,3.00D-31,-3.3D0,1.50D-12,-0.0D0 104
0.60 3.000E-31
-3.3 1.500E-12
h2o2(aq)+hv=2oh(aq)
o3(aq)+hv=h2o(aq) Set equal to O3+hv=>H2O (despite oddness)
1.000E+00 1.318E-01
(all these JPL03)
CLO+NO2=>CLNO3, CL+O3=>CLO)
(all these JPL03)
(all these JPL03)
(JPL03. Note, no Br+H2)
Rns from Sander 96)
(Orig: BRG. Approx for BRG+O3->BRO, 0.9 BRO here)
No rate available)
(all these JPL03)
BRO+NO2=>BRNO3, BR+O3=>BRO)
(Sander: CL-+HOCL+H+; rate converted to HCLA equivalent with K=CL-*H+/HCLA;
k'=ksander*K, ksander=1.8e4)
(Sander MECCA: 1e9)
(Sander MECCA: 1e9)
(MECCA Sander 04=>BR2Q,not 2Br-)
(Sander 96, MECCA Sander 04)
(MECCA, Sander 04)
(Sander MECCA)
(CUT: 8 BRA,BROH here)
(Sander 1996, MECCA)
(Sander 1996, MECCA
(Sander 1996, MECCA
(MECCA-Sander 04)
OH tracer=OH*time(hours)
OH tracer=OH*time(hours)
OH tracer 3 removed by aq. chem.
2.1e-18 exp(-1256/T) xxu from Hall 1995 =>3e-20 Seigneur from Hall 1995.
2.100E-18 120. error =>4e-16 Schroeder 1991 (xxu) =>2.6e-18 Ariya et al. 2002. (Seigneur)
Ariya 2002
Hall and Bloom 1993 (Seigneur 2003) (small) (err, HGC2 changed to HGCL)
Ariya 2002 (Br)
Ariya 2002 (Br)
Ariya 2002 (Cl)
Tokos 1998 (Seigneur 2003)
Sommar 2001 (Seigneur 2003)
Munthe 92, M-1s-1.
Lin 1997, M-1s-1
Piejel 1995a, 0.600E+00 s-1.
HgSO3 (aq) => Hg(0) (aq)
0.0106 s-1 van Loon et al., 2000
Martell, M-1S-1
Lin and Pekhonen
Lin and Pekhonen
Pehkonen and Lin, 1998
HO2+HG OPTION - DELETE (Gardfeldt and Johnson, 2003) - START
Pehkonen and Lin, 1998 HO2+HG OPTION GOES TO HERE
===================================================================
HG+HO2 OPTION:
Add these reactions (based on Pehkonen and Lin, 1998)
or delete them (based on Gardfeldt and Jonssen, 2003)
Pehkonen and Lin, 1998
HO2+HG OPTION - DELETE (Gardfeldt and Johnson, 2003) - START
Pehkonen and Lin, 1998 HO2+HG OPTION GOES TO HERE
CLOH OPTIONS:
(1) APPROXIMATION 12/05
(2) EXACT 2/06
(1) APPROXIMATION 12/05
364 6.600E+11
(CLOH APPROX.
Shld not produce OHL).
365 6.100E+09
(CLOH APPROX:
Shld produce 1. OHL)
(2) EXACT 2/06.
must be in this format so that EXCORR works.
364 6.600E+11
365 6.100E+09
REPLACED REACTION TO APPROXIMATE BRG+O3:
HBRG+OH=>1 BRG
368 1.100E-11
(Orig: BRG. Approx for BRG+O3->BRO, 0.9 BRO here)
APPROXIMATE REPLACEMENT
368 1.100E-11
(Orig: BRG. Approx for BRG+O3->BRO, 0.9 BRO here)
OTHER SKIPPED BROMINE REACTIONS
364 1.600E+10
(Sander 1996, MECCA)
364 5.770E+09
(Sander 1996, MECCA)
364 4.400E+09
(Sander 1996, MECCA)
BROH SKIPPED REACTION - REPLACED WITH SUMMARY OF BACK-FORTH
(BROH- is just a back-forth reaction, with net.
Note, yields
should be a function of H+)
364 1.100E+10
(BROH APPROX.
Shld not produce OHL). (Sander 1996)
364 1.100E+10
(BROH APPROX.
Shld not produce OHL). (Sander 1996)
365 3.720E+07
(BROH APPROX:
Shld produce 1. OHL) (Sandyer 1996, MECCA. Note 10% removes OH, 3.3e7+4.2e6 to Br, OH-)
CUT-OUT HMSA REACTIONS
460 4.010E+09
461 1.050E+10
462 1.300E+10
463 2.150E+11
END SKIPPED REACTIONS.
--------------------------------------------------------------------------
-----------------------------------
SPECIAL INPUT FOR RADICAL BALANCE-BACK EULER SOLVER
-----------------------------------
(FAMILY SPECIES: CUT.
See SPECIAL SPECIES NOTE BELOW.
May need to add, temporary, to run this with older versions. )
SPECIAL INPUT FOR SOLVER: CASCADE LIST (ORDER OF SOLUTION)
--------------------------------------------------------------------------
ENTER LIST OF SPECIES IN ORDER FOR SOLVING FOR CHEMICAL PRODUCTION AND LOSS.
THIS MUST FOLLOW REACTANT-TO-PRODUCT ORDER.
ENTER SPECIES IN SEQUENCE FROM REACTANT TO PRODUCTS.
(FOR AQ-EQUILIBRIUM SPECIES, ENTER FIRST, GAS-PHASE SPECIES ONLY.)
EACH LINE CONTAINS UP TO THREE SPECIES, WITH THE FOLLOWING OPTIONS.
(a) ONE INDEPENDENT SPECIES (not counting matched species in equilibrium)
which may be the primary of a cascade pair chain (see below)
and which is also solved for gas-
(b) THREE OR MORE INTERACTING SPECIES that do not fit into the pair solution,
and are solved by MULTISOLVE.
The linked species list continues on multiple lines
until a blank or 'x' is entered.
(c) TWO SPECIES WHICH ARE SOLVED AS A SPECIES PAIR, with third blank or 'x'.
The species are entered as a 'pair' - the first is the primary species.
(d) PAIR DECLARATION: " 'pair' SPEC1 SPEC2"
Declares the species as an interacting pair, which is solved by the
pair chain solution.
SPEC2 is solved along with SPEC1.
SPEC1 (or a species it is solved with) must be included
elsewhere in cascade list.
CASCADE PAIRS:
The pair solution solves a group of two or more species with pairs of
closely interacting species, including a 'chain' of interacting species:
AB, AC, CC2, etc.
The pair chain consists of primary and secondary species:
A primary species may be linked to several secondary species
(with several primary-secondary pairs for same primary)
A secondary species may be linked to sub-secondary species.
Normally, pair species rapidly interact, but the pair solution also
works if interaction is zero.
(e.g. linked aqueous species that become independent if LWC is zero)
(a) "pair SPEC1 SPEC2"
= establishes SPEC2 as paired under SPEC1
but does not solve at this point in the cascade
(used to establish the pair chain)
(b) "SPEC1 SPEC2
x" = establishes SPEC2 as paired with SPEC1
and solves here in the cascade.
Pair examples:
HCL ->CL CLO ; also CL->HCL2 (CL2-, CL+CL-=CL2-)
Solve as HCL CL;
CL CLO, CL HCL2 ;
or CL CLO and HCL CL HCL2 multisolve - note multisolve can include pair.
SPECIAL SPECIES ARE INCLUDED AUTOMATICALLY.
DO NOT INCLUDE:
(H+, OH-, CO2 included in aqueous solver, do not include)
FORMAT 3(a8,2x)
--------------------------------------------------------------------------
(CL2 paired with HOCL, else add HOCL next)
includes HGOH, HGC2, HGCL, HGS3, HGS6, HGBR
Special equilibrium pairs
Peracetic acid (gaseous)
Fictitious hydromonosulfuric acid for aqueous
Fictitious so5 for aqueous,includes HSOG
Fictitious so4 for aqueous
Fictitious sulfate particulate for aqueous
replaces BRG; HBRG(paired w/HBR2). Includes BRO.
replaces HCLG paired w/CLG HCL2.
includes CLO.
includes CLG CLO CL2-
Fictitious co3 for aqueous
Counter for aerosol
Counter for aerosol
Counter for aerosol
Counter for aerosol
Counter for aerosol
OH tracer (OH*time, hours)
OH tracer (removed by wet dep.)
OH tracer (removed by aqueous chem.)
--------------------------------------------------------------------------
********END OF READ********
--------------------------------------------------------------------------
(1) CHEMISTRY
(2) CONVERGENCE
===================
NOTES ABOUT CHEMISTRY
===================
Aqueous chemistry - see Andy Graves' description.
Pandis and Seinfeld,
Hx, COx, O3, SOx, organics.
(see also Jacob, JGR,91, .
Lelieveld J AT CHEM 12,229, 1991,
Nature 343,227, 1990.)
CH3CO3 not published and uncertain.
Extrapolated from CH3O2
aqueous is small in Jacob JGR March 1997. Large in Lelieveld, 1992.
aqueous is small in LiangJacob JGR March 1997. Large in Lelieveld, 1992.
(Liang p. 5994:
CH3OOH Henry is 300x less then H2O2; same for CH3O2 v HO2.)
CH3CO3+O2- aqueous sink for PAN.
from Schuchmann and von Sonntag, J Am Chem Soc 110, , 1988.
FUTURE ADD:
From Walcek:
Atmos. Environ. 31,8,.
w/ reactions -> add/update.
Key reactions are
HO2(Aq) + O2- --> H2O2, 100x faster than gas.
O2- + O3 -->O2 + HO, also 100x faster than gas.
With trace metals, primarily Cu are added, the trace metal catalytic cycles
dominate HO2 (and radical) destruction:
Cu2+ + O2- --> Cu+
+ O2- --> Cu2+ + H2O2.
(Following Jacob, 1989 - he NEGLECTS AQUEOUS CO3-.
PLUS, SO2 NEGLECTED IN
OZONE STUDY, LITTLE IMPACT)
===================
NOTES ABOUT CONVERGENCE
===================
DIFFICULT CONVERGENCE PROBLEMS :
See full notes in REACTION.AQHG05aebr4f
--------------------------------------------------------------------------
********END OF FILE********
--------------------------------------------------------------------------

我要回帖

更多关于 qq邮箱格式怎么写 的文章

 

随机推荐