预设置里的声学法西斯是什么意思思?

 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
声学设计软件EASE应用研究
下载积分:2999
内容提示:声学设计软件EASE应用研究
文档格式:PDF|
浏览次数:32|
上传日期: 00:28:24|
文档星级:
该用户还上传了这些文档
声学设计软件EASE应用研究
官方公共微信次声学_百度百科
本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
次声学是研究次声波在媒质中的产生、传播和接收及其效应和应用的科学。次声是频率低于可听声频率范围的声。它的频率范围大致为10-4~20Hz。利用接收到的被测声源所辐射出的次声波,探测它的位置、大小和其他特性,次声在大气中传播时,很容易受到大气媒质的影响,它与大气中风和温度分布等有密切的联系。声重力波在大气中传播时,在理论上可以看作是一些简正波的叠加。
早在,就已记录到了中一些偶发事件(如大火山爆发或流星爆炸)所产生的次声波。其中最著名是日印度尼西亚的喀拉喀托火山突然爆发,它产生的次声波传播了十几万千米,当时用简单微气压计曾记录到它。在理论方面,最早在1890年研究了大气振荡现象。 前后,和高能炸药的出现,提供了较大的声源,促进了对次声在大气中现象的了解。在20世纪20年代还进行了高层大气的温度和风对次声传播影响的研究,并建立了探测高层大气的简单声学,为此还研制了灵敏度更高的微气压计、热线式次声传声器。30年代发展了电容次声传声器。40年代后,利用声波在大气中的传播速度与温度的均方根成正比关系的原理,提出了火箭-榴弹次声法测定高层大气温度和风速的方法,发展了次声接收和定位的新技术。
炸药的出现,提供了较大的声源
核武器的发展对次声学的建立起了很大的推动作用。使得次声、抗干扰方法、、和次声传播等方面都有了很大发展。核爆炸形成强大次声源,它产生的次声波在中可以传播得非常远。次声方法曾成为探测大气中核爆炸的主要方法之一。为此建立了许多次声观察站,进行了长时期连续记录和观察,人们还发现了大气中存在许多自然次声源,对它们的发声机制和特性有了初步的了解。现在知道的次声源有:火山爆发、坠入大气的流星、极光、电离层扰动、地震、晴空湍流、海啸、、雷暴、龙卷风、雷电等。认识并利用次声方法来预测它们的活动规律,已成为近代次声学研究的重要课题。
长周期的次声波在电离层中传播,使电离层受到拢动,这种以声重力波方式传播的次声波成为高空大气研究中非常活跃的课题之一。
次声在大气中传播,次声在大气中传播具有衰减小,并受波导和重力影响等特点。 声在大气中传播的衰减主要是由分子吸收、热传导、和粘滞效应引起的,相应的吸收系数与频率的二次方成正比,但在次声频,因频率很低,吸收系数很小。此外,湍流的作用也会引起次声波的衰减。但是它们的影响都很小,通常可略去不计(见)。
图1大气温度随高度的分布
大气温度密度和风速随高度具有不均匀分布的特性,使得次声在大气中传播时出现“影区”、聚焦和波导等现象。图1左边给出大气温度随高度的分布(纵坐标是高度,横坐标是温度),由图可以看到,当增加时,气温逐渐降低,在20km左右出现一个极小值;之后, 又开始随高度的增加,气温上升,在50km左右气温再次降低,在80km左右形成第二个极小值;然后复又升高。大气次声波导现象与这种温度分布有密切关系。声波主要沿着温度极小值所形成的通道(称为声道)传播。通常将20km高度极小值附近的大气层称为大气下声道,高度80km附近的大气层称为大气上声道。次声波在大气中传播时,可以同时受到两个声道作用的影响。
在距离声源100~200km处,次声信号很弱,通常将这样的区域称为影区。在某种大气温度分布条件下,经过声道传输次声波聚集在某一区域,这一区域称它为聚焦区。
风也会对次声在中的传播产生很大的影响。图1右边为风速随高度的分布(纵坐标是高度,横坐标是风速),中间部分为次声在大气中传播的声线图。从图中可以看到,顺风和逆风时差别很大:右边表示顺风情况,声线较集中于低层大气;在左边表示的逆风情况下,产生较大的影区。 不同频率的次声在大气声道中传播速度不相同,产生频散现象,这使得在不同地点测得次声波的波形各不相同。
大气的密度随高度增加而递减,如果次声波的波长很大,例如有几十千米长,这时,在一个波长的范围内,大气密度已经产生显著的变化了。当大气媒质在声波的作用下受到压缩时,它的重心较周围媒质提高,这时除了弹性恢复力外,它还受重力的作用。反之,当它在声波作用下时,也有附加重力作用使它恢复到平衡状态。所以长的次声波,除了弹性力作用外,还附加有重力的作用,这种情况下,次声波通常称为声重力波。
声重力波在大气中传播群速度关系
声重力波在大气中传播时,在理论上可以看作是一些简正波的叠加。基本上可分为声分支和重力分支。它们在大气中传播都具有频散现象。图2给出声重力波在大气中传播群速度关系,图中So、S1、S2、S3和S4表示声分支各阶简正波。GRo和GR1表示重力分支的各阶简正波。由于重力分支主要能量在地面附近传播。相应地面附近较高,因此传播速度较大。
领先的全程线性回音消除技术
次声测量包括次声接收、记录、探测和分析等。
包括信号的接收和抗干扰。信号接收主要用次声传声器,将次声信号的声能转换为可供放大和传输式记录的电信号。使用的次声传声器有电容式、动圈式、式和热线式等。由于大气中存在着许多干扰,所以次声接收中还要解决抗干扰的问题,也就是提高信噪比,常用手段有预滤波、长管次声阵和其他次声阵等。 次声记录的古老方法是把接收到的次声信号记录在感光纸或熏烟纸上,随着电子技术的发展,电子笔绘记录器、模拟磁带记录器、数字化磁带记录器和微计算机控制数据采集记录器已逐渐被普遍使用。
包括识别次声信号、测定的方位角和测定次声源的位置等。次声信号的提取和识别通常用滤波和多路相关技术实现;利用各种类型次声阵可测定次声波到达的方向;用多个次声阵即可交会测定出次声源的位置。
主要是测定次声信号的特性。在时间域对波列进行各种分析和相关分析、在频率域进行频谱分析或功率谱分析。在空间域用速度滤波方法,进行速度特性。为了得到频谱随时间变化的特性,则需要同时在时间域或频率域进行动态谱分析。
早在前,次声已应用于探测火炮的位置,可是直到50年代,它在其他方面的应用问题才开始被人们注意,它的应用前景是很广阔的,大致可分为下列几个方面:
①通过研究自然现象产生的次声波的特性和产生机制,更深入地认识这些现象的特性和规律。例如人们利用测定极光产生次声波的特性来研究极光活动的规律等。
②利用接收到的被测声源所辐射出的次声波,探测它的位置、大小和其他特性。例如通过接收、火箭发射或所产生的次声波去探测这些次声源的有关参量。
③预测自然灾害性事件,许多灾害性现象如火山喷发、龙卷风和雷暴等在发生前可能会辐射出次声波,因此有可能利用这些前兆现象预测灾害事件。
④次声在大气中传播时, 很容易受到大气媒质的影响, 它与大气中风和温度分布等有密切的联系。因此可以通过测定自然或人工产生的次声波在大气中传播特性的测定,可以探测某些大规模气象的性质和规律。这种方法的优点在于可以对大范围大气进行连续不断的探测和监视。
⑤通过测定次声波与大气中其他波动的相互作用的结果,探测这些活动。例如在中次声波的作用使电波传播受到行进性干扰。可以通过测定次声波的特性,更进一步揭示电离层扰动的规律。同样,通过测定声波与重力波或其他波动的作用,可以研究这些波动的活动规律。
⑥人和其他不仅能够对次声产生某种,而且他(它)们的某些也会发出微弱的次声,因此可以利用测定这些次声波的特性来了解人体或其他生物相应器官的活动情况。
、、、、、建筑声学、生理声学、生物声学、水声学、物理学、力学、热学、光学、电磁学、核物理学、。歌尔声学后市如何?
问问理财师就知道!
最近访问股
以下为热门股票
查看自选股请先
歌尔声学(002241.SZ)
涨停:@up_limit@
跌停:@down_limit@
@turnover@
@totalShare@
@preClose@
流通市值:
市盈率TTM:
信息地雷:
走势对比:
同时被关注:
委比 --&&&委差 --
金额(万元)
@retailIn@
@retailOut@
@mainOutP@
@retailInP@
@retailOutP@
净流入(万元)
占流通盘比例
@r3_p_svs@
@r2_p_svs@
@r1_p_svs@
@r0_p_svs@
占换手率比例
@r3_p_turnover@
@r2_p_turnover@
@r1_p_turnover@
@r0_p_turnover@
37909-09 15:51
1414009-18 17:10
1163009-18 17:03
1866009-18 18:12
2167009-18 17:54
5497109-18 16:42
1934009-18 16:24
2208009-18 16:06
2015009-18 15:54
1544009-18 15:45
2113009-18 14:41
2787009-18 11:37
3420009-18 11:25
503396309-18 10:42
:短期趋势下降K,中期趋势下降K;短期压力位29.28元,支撑位18.57元,量价配合度-29.20,处于价跌量稳的状态;个股综合评级★,技术趋势极为弱势。
:走势比较弱,逢高减仓
净资产收益率
主营业务利润率
净利润增长率
股东权益比率
现金流量比率
研究机构投资评级
最近60天内有个研究报告发布歌尔声学(sz002241)评级,综合评级如下:
资金流入额
资金流入率
公司名称:
歌尔声学股份有限公司
主营业务:
微型电声元器件和消费类电声产品的研发、制造和销售,主要产品包...
电  话:
传  真:
成立日期:
上市日期:
法人代表:姜滨
总 经 理:姜龙
注册资本:152643万元
发行价格:18.78元
最新总股本:6万股
最新流通股:7
所属板块:
每股净资产
每股经营现金流净额
净资产收益率
每股未分配利润
每股资本公积金
10派1.5元转8股
10派2元转10股
2015-03 2014-12
潍坊歌尔集团有...
华泰证券资管-...
中国人寿保险股...
中国人寿保险股...
中国对外经济贸...
淡水泉(北京)...
平安信托有限责...
全国社保基金一...
挪威中央银行-...
流通股东持股比例
记录登录状态一个月
还不是新浪会员?音乐声学_百度百科
本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来吧!
音乐声学是研究乐音和乐律的物理问题的科学。 对乐器和人的发音原理的研究是从激励器、共鸣器、辐射器三大部件来入手,以求得最高的发音效率和优美的音色。简单的响器,其激励、共鸣、辐射合为一体,如锣;电子合成乐器则用电路来模仿激励器和共鸣器,辐射器就是扬声器。
音乐家以、、(或称为)作为乐音三大要素,客观上决定任一声音的物理参量是声压、时程和频谱。对乐音而言,声压决定它的强度或响度感觉,频谱决定它的音色。音高在声学上称为音调,由频谱中的基音频率决定。若基音消失,音调的感觉不变,由谐音系列的结构决定。
 乐音一般不是稳定持续的周期信号,其时程可分为增长、稳定、衰减三个段落。不同类型的乐音,三个段落的时间不同。例如弹弦音和拨弦音的增长段比拉弦音的短促得多,并且几乎没有稳定段。在增长和衰减段,乐音的频谱与稳定段可以有显著的不同。因此,乐音的音色与时程的关系很大。对乐器的每个部件,都可以分析上述参量,以总结出音质优美的乐器的最佳声学条件。例如,世界公认最佳的意大利斯特拉迪瓦里小提琴,其物理参量有哪些特色,现在已有了深入的研究。又如研究共鸣良好的歌声,发现其频谱中2.5~3kHz附近有一特殊的共振峰等。此外,各部件之间的耦合对于达到最佳声学条件也很重要。充分了解各部件的振动原理和它们之间的耦合,乐器的制作和研究才有科学根据。
除上述参量外,单件乐器和管弦乐队的声压动态范围、频率范围和长期平均频谱是指导录声(即录音)、调音、重放,使之达到最好听感的基本参量,也属音乐声学的范畴。
亦称“音乐音响学”。侧重研究与音乐所运用的声音有关的各种物理现象,是的分支学科之一。由于音乐是有赖于声音振动这一物理现象而存在的,因此对声音的本性、其各个侧面的特性以及声音振动的前因后果的认识和理解,就影响到人类创造音乐时运用物质材料、物质手段的技术、技巧、艺术水平,也影响到人类认识自己的听觉器官对声音、音乐的生理、心理感受与反应的正确与深刻程度。由于这些原因,音乐声学作为音乐学与物理学的交缘学科,就成为音乐学的一个不可缺少的组成部分。音乐声学包括如下几个知识领域
作为物理学的一个分支的一般声学,是音乐声学的基础,它向人们提供有关的基础知识:声音作为物理现象的本质和本性是什么,乐音与噪声的区别何在,、音强和音色就其客观存在而言是一些什么样的物理量。古代人对音质音色的认识带有神秘感,只能借助各种类比词加以描述。用近代物理学方法进行分析的结果说明,每一种音色都是由许多不同频率(音高)的振动叠加而成的复合振动状态,可采用频谱分析的方法对它们进行解剖式的科学描述。声音通常是通过在空气中的传播而到达人耳的,因此空气中的声波就是一般声学必须研究的对象,它在空气中的传播速度(声速)、波长,遇到障碍物之后的反射、绕射,
所形成的行波、驻波,不同频率的声能在空气中自然消蚀的不同程度等等,在声学中都已得到研究。共振现象是声学中的重要研究课题,就能量传导而言,可有固体、气体、液体(内耳淋巴液)等不同的传导途径;就其强度与稳定程度,则涉及共振体的固有频率问题,激发与应随共振的两物体频率之间的整数比例关系问题,即与谐音列有关的谐振问题;这也是和谐感、音程协和性、律制生律法问题的一般物理学、数学基础。近半个世纪以来,已成为一般声学中份量日益加重的组成部分,电鸣乐器的出现已使电磁振荡成为声源的一种,在日常生活中,音乐的保存、重放、传播也都借助于声波与电波的相互转化来实现,已使声与电紧密地联系在一起。因此在成熟的工业社会里,电声学也是音乐声学的基础。
听觉器官的声学
研究人耳的构造属于生理学、解剖学的范围,但人耳何以能具有感受声波的功能,却还必须借助声学才能得到说明。况且由于听觉神经网络的构造过于精细,难以用神经系统解剖学的方法来研究,只能主要通过声学实验来了解其功能。解剖学能提供的知识至今还是十分有限的。鼓膜是外耳与中耳的分界面,它将听道中的空气分子振动转换为锤骨、砧骨、镫骨这三块听小骨的固体振动;镫骨底板所“踩”的卵形窗是中耳与内耳的分界面,它将固体振动又转换为耳蜗内淋巴液的液体振动,后者引起几千个微小器官里纤毛的共振,共振激起神经细胞的电脉冲。内耳的功能,它对声音的音高、响度、音色的感受特性等有关知识,则是由实验所积累的。关于对音高的感受:人耳可闻音的频率范围,为分辨音高所需的最短时值,音高辨认的相对性、绝对性和近似性,对同时性、继时性两音相互间协和与不协和的分辨;关于对响度的感受:人耳可闻音的强度范围,客观强度与主观响度之间的真数与对数关系(韦伯-费希纳定律),对不同音区的音客观上不同强度可能在主观上感受为同样响度(等响度曲线),同音持续与否对于响度感的影响,这些方面都积累了比较确凿的数据。但是关于对音色的分辨能力,积累的资料还不多。据推测,外周听觉神经具有分析功能,中枢神经的听觉区则具有综合功能;关于“主观泛音”现象(强的纯音会被感受为包含泛音在内),在解释中则假定内耳微小器官的纤毛可能发生谐振(谐音共振)。至于内心听觉与对节奏、音调、和弦的想象等能力的研究,由于更多与心理学交缘,尚未在音乐声学中得到充分概括。
是音乐声学中历史最悠久、内容最丰富、实用性最强的一部分。它从理论上阐明乐器的发音原理、结构与功能的关系,并对乐器进行科学分类;面向实践则对乐器制作工艺学与乐器演奏技术提出指导性意见。乐器的不同结构成分从功能上可划分为能源接纳、声源形成、共振、扩散等要素,而乐器分类则着眼于声源的类型。声源由固体振动构成的是一大类,其下又可细分为体鸣、膜鸣、弦鸣,后两种依赖张力形成弹性振动的声源;声源由气体振动构成的是又一大类,其下又可细分为单纯气鸣与有固体(簧片、嘴唇)振动配合参与的气鸣两种;声源由电磁振荡构成的是第三大类。但乐器制作注意的重点却在共振,音质在很大程度上取决于共振的均匀性与谐振性,音量则取决于共振的充分性(又及时扩散)。为了达到更理想的声源状态与共振状态,乐器制作在材料和形制上都须精心探寻(见乐器学)。音准问题是某些定音乐器必须关心的,但它还受制约于律制。乐器声学对乐器演奏技术的指导作用,主要集中在能源介入与声源形成这两个环节的处理方法上,是音乐声学中常被忽视的方面。这固然是由于各种乐器的演奏家未能从声学的科学高度总结其演奏经验,同时也由于音乐学家多缺乏声学知识,在演奏评论中不善于从这一角度指出优劣。
人声可以算作广义的乐器之列,但它不同于一般乐器的主要特点有二:人类发声器官的各个部件都是柔软的肌肉韧带,不同于一般乐器的刚性部件;控制这些肌肉韧带的神经活动,不象支配手与唇舌肌腱的神经活动那样随意自由,而带有很大程度的本能性与不随意性;对这些肌腱状态的自我感觉,也不
我国古代编钟
那么客观清晰,而带有很大的朦胧性与虚幻性。就其涉及人体器官的生理状态而言,嗓音声学也可归属广义的生理声学,但它与听觉器官的生理声学本质上不同,所研究的并非声音感受过程中的,而是发声过程中的生理声学问题。仿照乐器声学的分析方法,人类发声器官亦可从能源、声源、共振、扩散四个结构要素来讨论。嗓音接纳的能源来自内脏对肺内空气的压力,但造成压力的运动部位并不在肺而当在下腹(丹田)。声源是由声带(喉)的状态形成的,但紧靠着它的共振腔是从声带到口腔、鼻腔末端之间的管道(咽),管道的一定口径与长度使空气分子得以充分参与共振,咽与喉的状态配合是发声器官良好工作状态的核心。随后,口腔内的空气分子当然也参与共振,但这已服从于歌词的元音、辅音的吐字,其功能已非旨在增大音量的共振,而是给咽喉传来的音波附加特定元音、辅音所应具备的“频谱共振峰”,随即扩散,把声波送到远处。运用发声器官的技巧必须包括而应加以训练的方面很多,诸如:音域的伸展,真假声的选择互补,换声区的平顺过渡,气息长短缓急的控制,音量强弱幅度的扩大与调节的灵活,音色的变化,吐字的清晰准确,音准节奏的掌握等等。古往今来各民族各地区的不同唱法与不同声乐学派,各有独特的运声方法,积累了丰富的实践经验,但由于人声器官构造的复杂性,作为一门音乐学学科的嗓音声学至今尚在草创时期。
音律和谐的声学
侧重数理的声学分支,为音阶、调式、和谐理论提供物理学、数学依据。由于这一学科历史悠久,有关律制的研究成果已形成这一专门学问;但律学还不能包括这一学科的全部内容,近代以来,在结合听觉器官的声学特性研究和谐问题的过程中,发现了不少有待解释的现象,开辟了新的研究方向。不同音高的两音波叠加,因互相干涉而形成时强时弱的周期性交替,当周期性的强音稀疏可数时,称为“拍”,当其稠密不可分辨时,就在听觉器官中融成第3个音,称为差音”,其频率是前两音频率之差,例如,前两音为□、□,则差音为□。差音现象最早为意大利中音提琴家兼作曲家G.在1714年所发现。差音之可被听到,与听觉的和谐感有关。关于听觉对协和与不协和的分辨问题,19世纪后半叶德国生理学家兼物理学家H.黑尔姆霍尔茨()与音乐心理学家兼比较音乐学家C.施通普夫分别进行了实验研究。前者认为,听不到还是听得到“拍”,是感觉协和与否的分界线。后者认为,感到还是感觉不到两音融合为一,是协和与否的标志。但是这两种理论对于非同时性而是继时发出的两音之间协和与否的解释都是无效的。并且由于听觉对音高分辨的近似性(带域特性),微微偏离协和关系仍可感觉为协和,例如平均律小六度和声音程有明显的“拍”,仍可感到协和;反之,由于使用条件的改变,协和的亦可变为不协和,例如大三度音程在调式中用作减四度音调时就令人感到不协和。这就涉及人工律音程在听觉器官中向自然律音程转化及其规律性问题。此外,关于泛音列与沉音列在和弦与调式形成中有无作用这一争论了几百年、对和声学与调式理论具有根本指导意义的问题,也并非听觉器官之外的物理学问题,必须结合听觉生理声学乃至与内心听觉等有关的心理声学这些特殊物理学领域的探讨,才有希望找到答案。
对音乐在室内表演的声学条件进行研究,是与音乐学交缘的学科领域。建筑声学中有些问题(例如隔声、抗震)是与音乐并无直接关系的,但有些问题则与音乐表演的音响效果关系密切,统称室内声学问题。室内声学注意到如下问题:房室厅堂的几何形状,为了防止出现房间自身固有
频率对音乐音响的干扰歪曲,必须消除相对墙面之间、天花板地板之间平行的方向关系,消除可能造成声灶的空穴、凹面;为了使声波在室内多次往返反射又防止出现回声,房间长宽比例不得过于悬殊,各个部分的吸音性能应当均匀,并在墙面上多设置扩散体;各个表面装修吸音材料的目标是达到适度的混响时间,混响时间在各个频率区应大体均匀(过高区可趋短),而其秒数(0.8~2.2)则取决于房间容积的大小以及所唱奏的音乐的风格类型。在结合使用电声的条件下,以及为录音工作创造良好室内音响条件的要求下,室内声学设备已有不少新发展。
对乐音和乐律的研究主要是音调与频率的关系,和音阶的频率划分,音程的协和性等。中国早在周代即已广泛通行了琴、瑟一类乐器。在摸索与的关系之时逐步创造出一种“钟律”,其中包括著名的“三分损益法”。这种生律法在春秋时期已经用来调钟。这个乐律是世界上最早的自然律。这是中国古人对音乐声学的重大贡献,比传说的(公元前500年)生律法早得多。
曾侯乙墓出土的战国初年编钟,证明中国非但最早在律制上有科学的发明,而且最早确定了调音的基准频率,掌握了乐器的调音技术。甚至更早在商周时代即已创造出一钟二音(一个钟能发出两个基音),这是音乐史上的奇迹。除律制外,中国古代对泛音系列的发现和在乐器演奏时的应用,管乐器音调的管口校正法,簧、管耦合的原理和控制技术等方面都有重要贡献。
传输和接收
任何声音在产生出来之后,接着是传输(包括录制和重放)和接收的问题。乐音的传输是电声学和厅堂声学的内容。乐音的接收,须计及人的心理感受亦即主观评价,这是心理声学的一部分。它们虽不属于音乐声学范围,但却与音乐声学紧密相联,至关重要。录制或重放设备或技术的缺陷,往往会破坏优美动听的音乐节目的色彩;一件原来不够完善的乐器,其声音效果也可通过调音在一定程度上来补救。
欣赏音乐时,环境的声学条件也可能造成乐音的失真。至于人对的心理感受,则除了响度与声压级的关系、音调与频率的关系、掩蔽、定位效应等人类的共性之外,还与人的爱好及音乐素养有关。讨论研究音乐声学须涉及这些相关的学科。
次声学、超声学、、、、建筑声学、生理声学、、水声学、物理学、力学、热学、光学、声学、、、“知史而明今,专业修养第一步:读史。”——燕翔建筑声学的历史是大众集会和娱乐的历史;是贵族人群追求听觉享受的历史;是科学家们深刻认知感官世界的历史;是艺术家们执着于听觉艺术推动的历史;也是千万人置身其中机缘巧合的历史。建筑声学与其说是一门博大精深的学科,不如说是感觉与外界、科学与艺术、技术与文化的辩证统一,她的历史印证了人们在不断理解自我感受的过程中,人与自然界、人与人、人与精神世界的相互作用。建筑声学是围绕建筑中听音问题和噪声问题而展开的认识世界、理解世界进而改造世界的学问之一。眼、耳、鼻、舌、身无时无刻地向人们传递着视觉、听觉、嗅觉、味觉等感觉,受想行识全在其内,喜怒我乐尽在其中。对耳所关联的精神世界的求索,是推动建筑声学发展的源动力。▌ 古代的实践非洲土著音乐之所以节奏感强,其重要原因之一是,在广阔的野外演奏需要这样做。欧洲古典音乐悠扬而舒缓,这与在剧场内演出有密切的关系。中国古代演出场地多为有顶而无墙的“亭子”,似乎介于非洲与欧洲之间,中国戏曲的节奏感也是介于两者之间,必定也受到了古戏台的影响。聪明的古人通过长期实践适应了音效与环境的平衡,在声学方面的成就值得我们敬畏。古罗马埃皮达罗斯露天剧场古罗马埃皮达罗斯露天剧场(Theaterat Epidauros),建于公元前300年前,观众达17000人。为了使观众尽可能地靠近舞台,将观众席布置成升起很大的半圆形,提高了听闻效果。另外,演员使用面具来夸张面部表情,同时增加了向观众席的声辅射。表演区的上方及两侧建了倾斜的墙面,对子声音反射、提高语言清晰度有很大的好处。另外,古代室外背景噪声很低,全场观众静息而鸦雀无声时,表演者即使很微弱的声音也依然容易听清。公元1世纪,维特鲁威在《建筑十书》中描述了露天剧场观众区设置多个声瓮,即敞口大坛子,用于“聚拔声音”,还对声瓮不同共鸣音调、位置及布局做了详细的介紹;现代声学研究认为,声替对干古罗马露天剧场声学效果的贡献并不大,仅起到一点点储能器的作用,但是却对后来建筑音效设计产生了极大的影响,甚至再1000多年后的欧洲教堂里,还常见在墙壁上埋入向外开口的坛子,以期“提高声音效果”。无论怎样,现今仍然给与这一剧场高度的评价:“依靠山边拖空的半圆形地形就座的方式以及建筑的声学效果,使得埃皮达罗斯剧场成为公元前四世纪最伟大的建筑成就之一。”法国巴黎歌剧院古希腊和古罗马时期(约650BC-400AD)、早期基督时期(400-800)、罗马风时期(约800-1100)、哥特及拜占庭时期()、文艺复兴建筑时期()、巴洛克时期()、及后来的古典主义时期等欧洲古代时期兴建了众多剧场,主要目的都是演出、集会或宗教活动。由于设计者对室内声学知之甚少,声学被神秘化。这些时代的音乐,包括教堂音乐、合唱曲、歌剧、交响乐等,都努力去适应当时普遍的厅堂声学效果。巴赫的管风琴音乐(18世纪上半叶)是专门为莱比锡(Leipzig)的托马斯教堂(Thomas)所写的。巴洛克和古典音乐(),以海德尔、莫扎特、贝多芬为代表,是专门为贵族的舞厅而写的(如法国里昂城市大厅)。奥地利维也纳金色音乐厅意大利歌剧,以多尼采蒂(Donizetti),罗西尼,威尔第等为代表,是专门为米兰、伦敦、巴黎、维也纳、纽约等大型马蹄型剧院而写的(如法国巴黎歌剧院)。浪漫主义时期(19世纪)的作曲家,门德尔松、勃拉姆斯、李斯特、德彪西、柴科夫斯基等,脑海中则只有维也纳、莱比锡、格拉斯哥、巴塞尔的音乐厅,其中杰出代表是奥地利的维也纳金色音乐厅。巴黎歌剧院的设计者沙尔勒·加尼叶(Charles Garnier,)反映了古代建筑师对声学的认识,他说:“我必须声明我没有采用任何原则,没有任何声学理论,其成功或失败,我听天由命。”据称,20世纪之前,唯一一个设计中考虑了建筑声学的厅堂,是位子德国拜罗伊特瓦格纳节日歌剧院(Bayreuth Wagner Festival),声学效果一般,建于1876年,具体如何考虑的,后续记载不得而知。相传孔子当年讲学的杏坛中国古代先贤们在建筑声学方面的实践与欧洲截然不同。公元前700多年的春秋时期,孔子曾在曲阜的杏坛讲学,如下图是其场景描画及现今在原址上复建的杏坛讲堂。绘画中描绘是露天讲学,笔者更倾向于曲阜复建的杏坛,应是有顶的,至少遮阳避雨,另外面对声反射也有好处。但是,可以肯定的是,当时孔子是不会考虑建筑声学的,孔子倡导“君子远庖厨”,他认为技术是“奇技淫巧”,使孔子和他的弟子们不可能与负责建造杏坛的下等工匠们探讨声音问题,最多监理一下是否符合礼数祖制而己。传说孔子“弟子三千,贤者七十有二”,就杏坛的建筑声学效果来讲,同时听讲的弟子最多不超过100人。铜雀台假想复原图汉代曹操所建铜雀台,虽是当时欢庆胜利之用的表演中心,估计建筑与杏坛基本是同一套路,即有顶无墙的“亭子”,可能有两或三层,是曹操观看歌舞表演的场所,良好的声学效果基本无从谈起,杜牧《赤壁》诗中写到“东风不与周郎便,铜雀春深锁二乔”,可见铜雀台仅为曹操私人会所,观众应是很少的,不需要大范围传声。孔子的儒家思想漠视科学技术,造成五四运动前几千年的讲坛、楼台、戏楼等集会观演建筑场所均缺乏建筑声学考虑。其实,儒家思想至今依然影响巨大。山西临汾牛王庙古戏台(位子山西临汾市西北25公里魏村),兴建子金代,是中国古戏台的最重要代表之一,距今约1000年。位子北京故宫的紫禁城漱芳斋戏台是清代修建的豪华皇家戏台,距今约200年。从两个戏台可以看到强烈的杏坛身影。孔子讲学的时候,他的音量、语调、节奏必须有迎合杏坛建筑声学效果的考虑,否则难以传递语言信息,而其后近2000多年里,受到礼教的束缚,没有人去改变这种声环境,而是不断改变自己,创造各种各样有利子迎合这种声环境的讲法、唱法和演奏方法。唐五代名画“韩熙载夜宴图”中国古代也有大量室内表演,如敦煌莫高窟172窟描绘的“西方净土变”(“变”是梵意,有美术画的意思),以及唐五代名画“韩熙载夜宴图”和明崇祯本《金瓶梅词话》中插图。由于这些表演都是为王公贵族服务的,观众数量很少,距离演出者很近,建筑声学的问题表现得不突出。明代姚广孝的吸声降噪房虽然中国古代没有现代意义的建筑声学,但是聪明智慧的中国人仍然掌握着诸多建筑声学知识。明代《长物志》记载,琴师为了增强演奏效果,地下埋一大缸,缸里还放一口铜钟,形成特大共鸣箱。明永乐皇帝朱棣还是燕王的时候,为了日后起兵夺权,在后花园秘密建地下室“私铸兵器”,为防止声音外传泄密,其谋臣姚广孝采用在墙壁上埋入大量的开口向室内的瓮罐进行吸声降噪,翁起到了亥姆霍兹共振吸收器的作用。另外山西运城普救寺莺莺塔、河南洛阳白马寺的齐云塔、内蒙巴林右旗辽代白塔的“蛙鸣现象”,即正对塔拍手说话可听到多次重叠的声音,象似蛙鸣,原因是多层挑檐形成的声反射;还有北京天坛回音壁、三音石和圆丘的特别建筑形式形成了特殊的声音反射现象。回音壁直径65米,可使微弱的声音沿壁传播一二百米,在皇弯宇的台阶前三音石可以听到几次回声。古人如此奇妙的声学效果,应该是出自经验之手精心设计的,严格符合声学原理。这些都是中国古人的创造,也成为建筑声学发展历史的一部分。古代时期尚无机械工业,交通主要以马车代步,房屋内也没有任何现代化设备,所以噪声问题不突出。有人分析过《红楼梦》,书中最全面、最丰富地描绘了清朝约200年前的当时社会,关于声音总共出现2万多次,与噪声相关的主要是马车、马叫声等,不过才60多次,而且作者曹雪拜未对其有任何“噪”的评价,说明古代生活要比现代安静得多。不过在古时候欧洲城市中,由于居住区密度大,街道路面不平,铁轮子的马车驶过石板的街道,噪声使街旁的住户彻夜难眠。中世纪英国国王禁止丈夫在夜晚打骂妻子,并非尊重妇女之举,而是防止哭闹声打扰四邻,这也许是最早通过立法进行噪声防治的案例了。唐人李群玉有一首《石灌》的诗,“古岸陶为器,高林尽一焚。焰红湘浦口,烟油洞庭云。田野煤飞乱,遥空爆响闻。地形穿凿势,恐到祝融坟”,其中“田野煤飞乱,遥空爆响闻”之句,生动地描绘了当时手工制陶、采煤、开矿等的作业时,所形成噪声污染的情景。莺莺塔蛙鸣现象原理▌ 近现代的发展近代建筑声学的创立源自子社会发展的需要和划时代人物的出现。中世纪的教堂,因空间大、石材墙面多、室内声音听不清楚。文艺复兴时期意大利建造的大型剧场,声学缺陷相当普遍。随着十九世纪兴起的工业化与城市化进程,大型集会增多,建筑体量更大了,声学问题更加明显地反映出来。意大利米兰大教堂容积达2万多立方米,大理石材质,室内混响时间长达8秒,根本无法演讲。19世纪初,德国人弗里德利克o察拉迪(E.F. Freidrich Chloudi)对室内混响现象进行了研究,并编著《声学》。德国物理学家亥姆霍兹于1862年发表了伟大著作《音的感知》,较为系统地论述了声音物理现象和听觉现象。建筑声学创始人:赛宾1877年,英国物理学家威廉o瑞利(Lord John William Royleigh,年)发表巨著《声学原理》,物理声学理论已达到极高的水平。但是,一方面,因为无人请这些科学家参与建筑工程,即使有请,当时的科学家们也尚无完备的处理材料、工艺、施工等工程实践能力;另一方面,虽然有成功剧场的先例,但是因对音质与建筑关系认识的模糊性,没有量化的定义和确切的计算方法,点滴的经验不具备可操作性,也无法传承。那时,建筑声学正处于接近黎明的黑暗期。弗格艺术博物馆1895年,哈佛大学弗格艺术博物馆(Fogg Art Museum)讲演厅落成,因听不清而不能使用。哈佛大学校长埃利奥特(Charles W.Eliot,年)委托物理学系27岁的助教W.C.赛宾(Wallclce Clement Sabine,年)解决这一问题。据说,赛宾在将近40个不同容积的房子里进行了实验研究,对比了声效极佳的桑德尔斯剧院、声效一般的杰弗逊大厅讲演室和声效极差的弗格讲演厅,发现坐椅塾具有吸收声能的效果,得到了经验公式——赛宾公式,提出了混响时间和吸声的概念,找到了过长的混响时间是影响语言清晰度的原因,总结出混响时间与房间容积成正比、与吸声量成反比的重要结论。赛宾和建筑工程师一起进驻弗格演讲厅开始施工,从那一刻起,建筑声学从黑暗中一步跨进了科学的殿堂。解决了哈佛大学的问题后,赛宾名声鹊起,随即被邀请进行的波士顿音乐厅的声学设计,该大厅优良的音质至今仍为全世界称道。美国波士顿音乐厅建筑声学理论体系建立以后,房间声学研究更加深入,在欧美也带动了大量的音质工程实践。继赛宾之后,在美国MIT大学又涌现出三位声学泰斗,分别是波特、白瑞纳克和纽曼,他们3人子1948年在美国麻省的剑桥成立了以三人名字命名的BBN声学咨询公司。BBN公司承接了美国航天局风洞(Wind Tunnel,NACA)消声工程,是50年代美国最大的噪声控制工程,以及肯尼迪中心剧场(相当于美国国家大剧院)声学设计等众多项目,并为MIT开设相关声学课程培养研究生,撰写了至今依然影响力很大的书籍或论文。18-19世纪的自然科学的发展推动了理论声学的发展,19世纪末古典理论声学发展到最高峰。从20世纪开始,由于电子管的出现和放大器的应用,使非常微小的声学量的测量得以实现,为现代建筑声学的进一步发展开辟了道路。20世纪初至中期,尤其是第二次世界大战后,广播录音和电影配音的飞速发展,更大更快地刺激了美国建筑声学在实际工程中的运用,同时,由于行外人对建筑声学的神秘感,也为建筑声学工程师们提供了丰厚的经济回报。BBN在MIT大学门口盖起了BBN大楼,还为MIT的研究生们提供免费研究室。被誉为互联网之父的里克里德(Licklider),年就曾经在BBN工作过,他劝说白瑞纳克为他购买了一台在当时天价的计算机,5万美元,他用这台计算机建立了世界上第一个网络节点,可见BBN当时的财力非常丰厚。澳大利亚悉尼歌剧院(外景图)与美国建筑声学大发展同时,德国、英国、法国、丹麦、瑞典、澳大利亚等国家的建筑声学研究和实践也在快速推进。德国室内声学家库特鲁夫(H.Kuttruff)、德国哥庭根大学的施罗德(Shrodler)、澳大利亚的马歇尔(Marcel)、日本的安腾四一(Y.Ando)、中国的马大猷等人在室内声学及噪声控制理论方面,作出了突出的贡献。丹麦科技大学声学所、英国利物浦大学声学所、丹麦的B&K公司在建筑声学应用及测量方面,也发展到很高水平。近百年来,在全世界各地兴建了剧场、剧院、音乐厅以及讲堂、会堂等数以千计的声学建筑,不乏有美国达拉斯音乐厅、悉尼歌剧院等近现代建筑史上辉煌的建筑作品,其中,建筑声学理论的“保驾护航”起到了不可磨灭的历史作用。澳大利亚悉尼歌剧院(内部图)最早将建筑声学引入中国的是清华大学物理系创始人叶企孙先生。1920年3月,由美国建筑师亨利o墨菲(Henry Killam Murphy,年)设计的清华大礼堂落成,建筑形式融合了古希腊和古罗马的建筑风格,座席1400个,是当时中国大学中最大的礼堂兼讲堂。圆形的天穹和光滑的石材墙,使室内听音非常困难。声学改造的需要随之而来,但不同意见“七嘴八舌”,有说是穹顶造成的,有说地板要抬高,有说室内墙壁直角阻断声音等等。清华大学标志之一:大礼堂时任校长梅始琉委托叶企孙先生带领物理系教员解决此事,叶企孙先生也希望籍此事声学工程研究开始了。叶先生当时已经看到过赛宾关于混响理论的论文,在考虑中国人着装特点的基础上,他认为,需要在墙面和顶棚安装足够的吸声材料将混响时间降到1.75秒。那时他没有精确的测试仪器,只能粗估。通过实验室测试,叶先生认为可采用羊毛毡作为吸声材料。在清华大学校史中,叶先生的研究有详细记载,但未见有实施记载,估计可能的原因是粘贴吸声毡破坏了建筑风格,以及时局动荡使工程搁浅,还有最重要的一点的即使什么都不做,也能将就使用。这一将就,就一直将就到了今天。据说当时校长开会,批评台下教师打睦睡,实际是听不清的原因。后来扩声系统更换了多次,起到了一点听音弥补的作用,但建筑声学处理尚非常有限。清华大学大礼堂结构图1949年建国以后,留学归来的声学专家马大猷先生,组织进行了人民大会堂的声学设计,容纳1万人的空间是世界上最大的礼堂了,其中的建筑声学问题非常突出,马先生利用建声和扩声互补的方法,很好地解决了上万人的听音问题,在当时是了不起的成就。马先生还为国家培养了一批声学专家,至今很多人仍在学术或工程舞台上十分活跃。进入机器时代以后,交通噪声、工业噪声日趋严重,噪声控制技术、声学材料、减振降噪手段也随之快速地发展起来,1953年在美国出版的《操声控制手册》(Hand book of Acoustic Noise Control)已经具有相当高的理论水平。人民大会堂,上万人“听”是当时的难题但是很快人们就发现,先进的噪声控制技术井不能彻底解决噪声问题,治理噪声的根本途径在子“立法”,立法的根基是评价标准。当时,世界范围内的声学学会已经建立,其重要的工作之一即制定噪声标准,为噪声防治提供法律依据。例如,60年代美国飞机场噪声是很令人头痛的问题,单纯地在建筑上进行隔声处理难于奏效。后来通过立法,规定飞机自身的噪声限值、要求起飞降落执行减噪飞行程序,限制在噪声影响区内的土地开发等,70、80年代大大地缓解了飞机噪声问题。常常,噪声还与政治联系在一起,如60年代中国和前苏联为了体现社会主义制度的优越性,制定工厂噪声卫生标准限值为不大于85dB(A)比西方资本王义国家要求的90dB(A)还严格5dB。但是,在当时“先生产、后生活”的理念下,机械厂、纺织厂、矿山、油田等单位很少有真正噪声达标的。▌ 二十一世纪的新认识至今,人们已经发现了众多与厅堂音质相关的客观指标,使建筑声学设计有理论指导可遵循:赛宾发现了混响时间,指出听音效果与室内声能衰变的关系;哈斯发现了哈斯效应,使人们认识到回声的来源是强的长延时声反射;白瑞纳克发现了近次反射声,提出直达声到达后50ms内的反射声有利于声音的“亲切感”;库特鲁夫总结了脉冲声响应的概念,人们对声音在房间中反射的认识更进一步;施罗德发现了散射对音质效果的重要作用;马歇尔发现了侧向声能所代表的空间感;安腾发现双耳效应因子lACC。巴伦发现视在声源宽度指标ASW对听音围绕感的影响。另外,强度因子G、时间中心Ts、早期衰变时间EDT、明晰度C80、语言传输指数STI/RASTI,辅音损失指数ALCONS、初始时延间隙ITDG、表面散射指数SDI、混响低音比BR等大量指标也不断被发现和研究。同时,吸声材料、隔声材料、减振材料、消声器等也飞速地发展起来并大量应用,各种精密的实验仪器、实验室、实验方法也被不断开发出来。最值得一提的是50年代出现的缩尺比例模型测试和80年代发展起来的计算模拟技术使建筑声学手段与现代高科技水平同步。缩尺比例模型测试计算机模拟测试近百年来的发展中,世界范围的大量实践,也使有识之士认识到,建筑声学“与其说是技术,不如说是艺术”。虽然已有上万篇技术文献发表,其中不乏大量有深入的、划时代的精品,但是在解决实际建筑声学问题中,这些严谨的声学原理总有无法完全覆盖的现实细节。19世纪60年代,白瑞纳克先生已经是世界上鼎鼎有名的声学专家了,他对世界上69个著名厅堂进行了声学研究,井撰写了知名巨著《音乐、声学和建筑》,将赛宾开创的建筑声学发展到“广泛实用”的阶段。然而,恰恰在这一历史时期,专家们虽自认为已经“登峰造极”,但“严格遵照理论”设计的纽约林肯中心的爱乐(Philharmonic)音乐厅出现了“低频缺乏问题”,后来,经过十数年的研究,人们才发现,是由于浮云反射板低频反射不足凸显了座椅低谷效应造成的。此事被誉为“建筑声学史上伟大的失败”,人们认识到建筑声学还很原始,还有很多问题要探索,“从猿到人”还将有漫长坎坷的历史要经历。北京音乐厅1985年,国内第一个严格进行声学设计的北京音乐厅落成,使用中发现低频混响不足,并在国内声学界引起普遍争论。多年后的统一意见是,墙壁上木板装修在施工中未与混凝土密实粘接,造成了大量低频吸收,降低了低频混响,这井非声学设计的失误,而是施工控制的网题。有识之士应认识到,无论任何细节导致厅堂声学失败,结论只有一个,声学设计者失败了,因为你没有预测到导致失败的这一因素,未对其进行应有的、合理的有效控制。任何大厅中的演出带来的那种美妙的感受往往都会稍纵即逝。这种美妙的感觉如果能够不断在这个大厅中重现并获得交口称赞,那么这个大厅就会声名远扬。这当然是所有人的梦想,音乐家们渴望在这祥的音乐厅里表演,经理们渴望拥有这样的音乐厅进行经营,建筑师渴望这样的音乐厅是自己建造的。如果厅堂的声学参量超出客观预测和测量的允许值的范围,往往不会有优良的音质。但是,即使设计实现了良好的声学指标,“好音质”也不一定就此产生。美,需要量化和原则,需要悟性和理解,还需要机遇和缘分。与厅堂音质问题相比,噪声控制目标似乎要容易一些,“把声音降低到最低,最好完全听不见”。然而问题远非那么简单,工业时代为人类提供了便利,同时也带来了污染,噪声就是其中之一。一百年来,噪声控制技术虽然“与时俱进”,然而依然跑不赢人对自然改造的速度,城市的居住区和遍布世界的工业区再也回不到一百年前那种朴素、静谧、天人合一的安静环境了。飞机、火车、汽车、轮渡在我们周围咆哮着,发电机、内燃机、压缩机、风机、电机在我们左右轰鸣着,高音棚喇叭、市井的灯红酒绿在我们眼前喧嚣着,我们是在享受这些现代化设施的便利呢,还是在忍受它们对祖先遗传给我们的“安静基因”的破坏?在工程实践中人们很快发现,用dB表述的噪声和人对安静需求之间并没有永恒不变的绝对对应关系。不同人之间或同一人在不同场合,对噪声的容忍程度的范围是如此之大。例如,卧室内有轻微响声就无法安睡的人,在出差的火车或飞机上也能安然入睡。噪声问题是人造成的,噪声控制效果的最终评价者也是人,噪声控制技术的实施还是人,噪声问题中人的因素与厅堂音质评价体系的“以人为本”殊途同归,笔者认为,甚至比集成电路、光纤通讯、纳米技术、宇宙探索等高科技问题更富有复杂性和趣昧性。当前的中国,经济的发展释放了人们对建筑声学的需求。在建筑市场持续升温的大背景下,在“一部分先富起来”跨越式生活水平提高的推动下,在城市建设“三大名片”(大剧院、体育中心、会展中心)的建设带动下,在所有制“个人化”后人们对自身环境要求大幅度提高的促进下,在《噪声污染防治法》等相关法律法规执行力度不断深化的要求下,建筑声学的需求就象“开了锅”一样,全国上下,遍地开花。音乐厅、剧场、影院、演播室、录音室等,音质效果需要建筑声学;体育馆、会展中心、宾馆酒店、机场车站等,吸声处理需要建筑声学;住宅、学校、医院、办公建筑等,隔声降噪需要建筑声学;电厂、水泥厂、化工厂、制造厂等,劳保环保问题需要建筑声学;就连学术上“不入流”的Disco、酒吧、卡拉OK、表演秀场也因噪声扰民或室内音质问题黏上了建筑声学。中国的建筑声学,正处于史无前例的大发展期。(待续)注:本文作者燕翔老师为清华大学建筑环境检测中心负责人、声学实验室主任,其毕业于清华大学,建筑声学博士。长期从事于厅堂音质、噪声控制、声学实验检测、计算机模拟等科研工作。近年主要设计的项目有国家大剧院、2008北京奥运场馆(国家游泳中心、老山自行车馆、国家体育馆等)、洛阳体育中心、大庆文化中心、福建剧院、北京南火车站、西气东输金坛储气库噪声控制等。主持翻译了《建筑声学设计指南》,编制修订了《厅堂混响时间测量规范》、《厅堂音质比例模型测量规范》等国家标准,为中国著名建筑声学专家。 预告:由云九影音文化传播机构联合清华大学举办的“2015清华大学建筑声学原理与设计”培训课程即将于-20日举行,这是目前中国影音行业最高级别的室内声学课程,也是最适合高级音响、高端家庭影院定制安装市场需求的顶级技术培训,燕翔老师将亲自为学员授课。详细报名方式可留意“影音新生活”随后的通知。本次培训活动由云九(Cloud9)影音文化传播机构整体策划与组织,为大受欢迎的清华大学建筑声学原理与设计培训课程的延续与深化,由清华大学建筑学院著名教授及学者讲学,内容包含了房间声学原理、小房间声学装修设计、房间测试及模拟、声学装饰材料特性、小空间声学案例分析等,培训重点针对小空间声学设计,同时还有消声室、混响室、隔声实验室等的参观,课程完毕经考试合格后将颁发具有重要价值的培训课程证书。 
 文章为作者独立观点,不代表微头条立场
的最新文章
时下各大厂商们正围绕4K电视的市场份额展开激烈竞争,然而日系家电大厂SHARP(夏普)则将目光放得更为长远,在家中享受专业电影院的环绕声效果,可以说是广大影迷们心中的梦想。可是真要实现起来却很困难!别的不说,光在房间为促进量贩式影院(包括影吧、影咖、影K)市场的健康发展,在中国电子音响行业协会的指导下,由杜比、D+M集团、草原有人曾经说过:对于草原的描述,一首马头琴曲的旋律,远比画家的色彩和诗人的语言更加传神。这话其实说得十分贴在第87节奥斯卡金像奖颁奖典礼上,一部来自美国的音乐剧情片《爆裂鼓手》(Whiplash)讲述了一个热爱音乐近日的Apple 2015新品发布会,让人联想到许多东西,智能电视绝对是其中一个耀眼的名词,记得智能电视在互好莱坞电影公司以其精湛的艺术水平、深厚的时尚底蕴和雄壮的科技,造就了许多经典的影片,也造就了一代代闪耀的巨星第二届广州HiFi耳机与数字音频展于9月12-13日在广州东方宾馆举行。展会上各大厂商纷纷展示了多款耳机与数为促进量贩式影院(包括影吧、影咖、影K)市场的健康发展,在中国电子音响行业协会的指导下,D+M集团、广州道奇生活,总是那样的忙碌。它不会因人们的抱怨而放慢脚步,也不会因人们的疲倦而停滞不前。它只会随着时间快步向前……天籁般的人声犹如乐音的无界之苍穹,唯有举头仰望才能观其真容。激烈的节奏与旋律则如无限的大地,就算双脚踏地也难有这样一个故事,早在18世纪,当时伟大的音乐家贝多芬是个极富想象力的人,在失聪后,他尝试了很多种方法让自己恢《碟中谍5》火热上映,“阿汤哥”依靠机智脑力和敏捷的身手,继续着不可能的任务。《碟中谍》系列中炫酷的“黑科技许多用户在搭建家庭影院的时候,有想过加入KTV,但由于空间或者资金的原因,不得不作罢,或者家庭影院与KTV并随着智能手机的全面普及和流媒体大行其道,我们经常可以看见人们在上下班途中,拿着手机、戴着耳机专心致志的欣赏视从FM调频收音机到数字广播,从无绳电话到高保真无线音响,无线通信技术的快速发展显示出对音频传输技术的巨大推动酒吧,可以很安静,可以很躁动。不过,许多人去酒吧是为了发泄压力,在震耳欲聋的音乐里,暂时抛却生活和工作中的重如果吸血鬼是穿着阿玛尼西装,打普拉达领带的贵族,神秘优雅,还有极高的血统门槛,那丧尸则彻底打破了种族、门第、近年来,耳机与数字音频行业发展颇为迅速,以此为专题的展会也在逐步增加。而作为国内首个以耳机和数字音频为专题的我们每天用肉眼所看到的景物,都是不一样的,其中一个重要的原因就是光线色温的改变。要知道自然界的光线不总是相同作为一门融合视觉、听觉的艺术,电影总是给人带来别样的体验,电影之所以动人,在于定格瞬间的流光烁影。那些你未到空间美学逐渐成为一个综合设计范畴。建筑设计师不断地拓展外围领域,将建筑、装饰、光影、声音等多方面的美学融汇其想必平时有留意耳机类文章的朋友,应该都会看过耳机相关的测量数据:“频率响应”、“阻抗”、“灵敏度”和“谐波失若不是12年前的愚人节上天与我们开了一个天大的玩笑,我们最爱的哥哥张国荣今天应该59岁了。尽管传奇尽皆化作昨为期三天的第19届广州国际高级音响展于今日在广州白云国际会议中心隆重开幕,作为南中国地区最具代表性的综合音响随着9月9日苹果秋季发布会到来,智能、影音行业也在这个初秋进入了一个小高潮。当然,仅此还不够,第19届国际高2014年中国全年投影机销售达到210万台,较2013年增加了10个百分点,整体市场已进入增速缓慢的稳定期。大提琴的音色低缓深沉,就像暗夜里与你倾述分享故事的老友,当旋律响起时,慢慢舒展,所有的哀愁与悲伤情绪便会随着自马兰士网络音频播放器第二季巡演火热开展以来,已在南宁、西安为大家奉上了精彩的数字音乐盛宴,在广大发烧友中获很多人都梦想拥有一间属于自己的家庭影院,甚至在某一时刻就心血来潮萌生了搭建影院的想法。但是,他们往往因为没有近年来耳机的发展趋势强劲,各大耳机厂商都纷纷推出多款精品满足耳机爱好者的需求,仅仅是2015年上半年,光是耳最近几年智能手机行业繁荣异常,几乎每周都有至少一款新机正式发布,在每一场新机发布会的PPT上,有一项参数都是作为客厅影音娱乐的神器,Soundbar有着十分明显的优势:节约空间、操作方便、安装快捷等。不仅可以为单一的↑ 水城威尼斯→ 贡多拉船意大利的威尼斯是一座世界闻名的水城,那里不仅风光明丽,令人神往,独具魅力的贡多拉船Digital eXtreme Definition(超高清数字技术,简称DXD),它是由飞利浦和索尼发布的如同缩写文章比扩写难,要拍出一个优秀的短片并不易。如果既要讲好一个小故事,还要塑造出人物特色,更想说出点东西见多了音乐APP,也试过了不少,有没有试过电影APP?前段时间火了一下的“足迹”是小case,下面这几款AP2015年柏林国际消费电子展(IFA)于9月4日在柏林展览中心拉开了帷幕。在此次展会中,来自全球各地的电子行最近,台湾电影教父侯孝贤的《刺客聂隐娘》被吵得沸沸扬扬的,观众对这部电影的评价分成了两个极端:一端是侯孝贤的Cloud9AV专业而权威的呈现电影、音乐、音响、家庭影院、智能家居、住宅电子集成等全领域的最新潮流与趋势,展现精彩纷呈的智能影音新生活!热门文章最新文章Cloud9AV专业而权威的呈现电影、音乐、音响、家庭影院、智能家居、住宅电子集成等全领域的最新潮流与趋势,展现精彩纷呈的智能影音新生活!

我要回帖

更多关于 xd股票是什么意思 的文章

 

随机推荐